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Abstract—In this paper, we present a novel approach to 2D
street map-based localization for mobile robots that navigate
mainly in urban sidewalk environments. Recently, localization # [:> A5
based on the map built by Simultaneous Localization and _ :

Mapping (SLAM) has been widely used with great success
However, such methods limit robot navigation to environments
whose maps are prebuilt. In other words, robots cannot navigate Sensor Data & Map Registration via Ml
in environments that they have not previously visited. We
aim to relax the restriction by employing existing 2D street
maps for localization. Finding an exact match between sensor

data and a street map is challenging because, unlike maps
built by robots, street maps lack detailed information about onboard sensor data [3] [4] [5]. Such maps are easy to be

the environment (such as height and color). Our approach to Matched with sensor data collected during navigation.
coping with this difficulty is to maximize statistical dependence However, typical 2D street maps do not provide detailed
between sensor data and the map, and localization is achieved information about the environment. For example, we cannot
through maximization of a Mutual Information-based criterion. — yregict colors of the road or the height of the curbs between
Our method employs a computationally efficient estimator of roadways and sidewalks or even the existence of curbs from
Squared-loss Mutual Information through which we achieved . . .
near real-time performance. The effectiveness of our method Street maps. This makes correlating sensor data with maps
is evaluated through localization experiments using real-world difficult.
data sets. Majority of existing street map-based localization methods
are designed for assisting human car drivers (e.g. car naviga-
. INTRODUCTION tion systems) [6] [7] [8] [9]. Such methods are not influenced
] ) o ) by the abovementioned difficulty because, localization is per-
~ We aim to realize autonomous navigation of mobile robotgmed by matching a vehicle trajectory with road network
in urban sidewalk environments. Over the past few decadggformation extracted from street maps, assuming that the
mobile robot navigation has been studied intensively, ar_\ﬂehicle is always on the road network. However, the precise
several authors have reported successful autonomous naviggsition with respect to the road, which is crucial information
tion in large-scale real environments [1] [2]. However, theik,, 5utonomous navigation, cannot be estimated.

Ioc_alization methods use prt_acisg maps of theT environmentAnhough several authors have already proposed using
built by Simultaneous Localization and Mapping (SLAM)gtreet maps for localization aiming to autonomous naviga-

techniques, in which sensor data are typically collected by, * heir methods are somewhat limited because of not
manually operated robots. The cost involved in the ConStruﬁ'ddressing the matching issue. For example, Chaetsaé
tion and maintenance of such maps will increase rapidly Ftoposed to detect lane markings from images and match
the size of the environment increases. This research aims{Q. .\ with the map [10]. Moralest al. proposed to detect
develop a localization system for a mobile robot by usingyaq center by laser measurements and match them with
existing street maps. The utlllzatlon_of existing street mapg,q map [11]. Those methods are not directly applicable
eliminates the additional cost required for building MapP%o varying sidewalk environments where robust detection
that are dedicated to robots, and enables them to localige roaq poundaries is not straightforward. Hentschel and
themselves in gnfgmhar envwonmepts. i Wagner proposed to detect building boundaries and match
One o_f th_e S|gn|f|cant phallenges in using 2D street Maffiem with the map [12]. The advantage of using building
for localization is matching sensor data with @ map. Thigoyndaries is that they can be easily detected by a laser scan-

complexity did not influence traditional robot localization,er However. the method is only applicable in environments
because, the robot localizes itself on a map built from itgnere buildings are sufficiently observable.

Fig. 1. Concept diagram of our localization method.

On the other hand, the matching issue was discussed by
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representation of the map. Different colors indicate different IDs.

Fig. 3. Model of the world. Sensor data and street map have implicit
dependency through objects in the world.
building. The limitation of their method is, however, that it

's not applicable to unfamiliar environments where we haVgtraightforward. The method described in [13] finds implicit

Phoeifréor ;n;?;nmcaetlon about the kind of existing objects Orrelationship betweeX andY under assumptions that some
PP ' - nowledge (i.eP(Z|Y) and P(X|Z)) are given in advance.
In this paper, we propose a novel localization framewor s .
owever, these probabilities vary depending on the places.

that relaxes the limitations in the previous methods. OUlEor example. appearance ofad varies from country to
method does not explicitly detect road boundaries nor use p€, app y

oo . oo untry; henceP(X|Z = road) also varies.
prior information. Instead, sensor data is directly matche .
. . ; Therefore, we take a completely different approach, where
to a map using a variant of Mutual Information (Ml).

The concept of our method, which is inspired by imag e find the dependency betweghandY. We assume that

registration using MI, is depicted in Fig. 1. Although Ml segen;;r;s(én mr?)gi EL?I d(?ﬁflgegtg)c-c?;d|r;tgi;0e)t(h(zctt3é F()jetr?;t
has already been used to register multimodal sensor d glesamet '%‘ of ob"ects exig']s,t,in ar.e;as. v;/,ith the nge seament
[14] [15] [16], to our knowledge, it has never been applie yp ) g

e . : . Naturally, features from sensor dak depends on ob-
to street map-based localization. Since the calculation Oi)ctsZ being observed; hence, there are latent dependencies
the original MI is computationally expensive, we employ etweenX andY'. Therefore, if the correspondence between

squared-loss version of Ml for efficient computation. . .
The differences between our method and existing metho&%1 andY"is correct, certain dependency betwe¥nand Y
should be observed.

are summarized as follows:
« We do not assume that the robot is always on the roag. Mutual Information as a Localization Metric

. Neit_hgr road boundaries nor building boundaries are We propose to employ an Mi-based dependence measure

epr|C|.tIy (.jetected.. . to correlate sensor data and a map. Ml has been conven-

* NO_ prior |nformat|.0n €.g. cplor, texture, or height Oftionally used for registration of multi-modal images [14].

objects in the en\{|ronme'nt is required. ) . . A standard approach such as Normalized Cross Correlation

« No other mform_atl_on b_e5|des boundary lines is require CC) can be used to register normal (unimodal) images

for the map. T.h's |_mpI|es that our method does_nqt carfs they typically havdinear dependency between their in-
whether a region in the map is a road or a building 0fensity values. Maximization of NCC leads to maximization
anything else. of linear dependence between pixel values in two images.
We evaluated our system through experiments using regdpwever, this is not always true when the two images are
world data sets. We demonstrate that our method enables ngagifferent modalities (e.g. MRI and CT in medical imag-
real-time, 2D street map-based localization without using]g). Registration is performed by maximizing M, which
prior information. corresponds to maximizingon-linear dependence between
ll. PROPOSED METHOD pixel intens_ity yalues. Our method applies this idea to mobile
robot localization, where we match sensor data to a map by
A. Model of the World and Representation of Maps finding non-linear dependency between them.

Our method uses 2D street maps consisting of boundary The procedure of our method is as follows. First, the robot
lines as shown in Fig. 2 left. We extract segments ofollects sensor data to extract features frontifferent places
boundary lines and closed regions and assign them uniqure the environment. We denote the set @fdimensional
IDs as shown in Fig. 2 right. In this paper, we call these IDfeatures by{xz1, ..., z,}. Itis assumed that relative positions
segment IDs. between the robot and the sensor data are known. Second,

The procedure is motivated by our model of the worldcorrespondence between the extracted features and a map is
(Fig. 3). We consider the problem of estimating the positiomade using the robot pose hypothegis Segment ID that
of a robot when it observes sensor data framplaces corresponds tor; is denoted byy;. Finally, we obtainn
in the environment. We denote features extracted from thgaired input data{(xl,ygw)x vy (xn,yy(lw))}.
sensor data byz, ..., z,}. Localization can be achieved by Features and map segment IDs are denoted by random
determining the locations from where the sensor data arisesriables X and Y (%), By assuming that the input data
If we have information regarding the relationship betweeis randomly generated from a joint probability distribution
X and map segment (e.g. P(X|Y)), the solution is P(X,Y®)), we search forv that maximizes a functiorf



that measures dependence, to localize a robot. The parameter to estimat® is a matrix ofb x b (b < n)
and each element in it is denoted & ;. Kernel centers
.,(w

(1, .ees T andg%w), s Ty )) are randomly chosen from the

Wi ¢ SMI iant of MI th input data. We use the Gaussian kernel forand the delta
e propose to use , a variant of Ml, as the measure, s 7 2< shown below.

f [17]. The definition and estimation of SMI are detailed in .

Section IIl. K(z,7) = exp (_ [l — 2] ) ©)
In this paper, we focus on 2D position tracking; we 207

estimate the 2D position and orientation of the robot during ~ 1, if y=g

navigation under the assumption that the initial position of L(y,y) = 0. otherwise (7)

the robot is known (with some errors). ’

W = argmax f(X,Y ™) Q)

The paramete® is learned to minimize the squared error
IIl. ESTIMATION OF SQUARED-LOSSMUTUAL in Eq. (9)

INFORMATION

A. Squared-loss Mutual Information min J(©), ®)

)
Mutual Information (MI) is a measure of statistical depen- (@) := //(T@(a?,y) —r(z,y))?p(@)p(y)dady.  (9)
dence between random variables and has been used to find

dependencies in data. Medical image registration is one of The minimizer is obtained by solving the following dis-
the well-known applications of Ml [14]. In our method, we crete Sylvester equation

employ Squared-loss Mutual Information (SMI), instead of 1 A 1

the original MI, to measure the dependence between sensor EKTK@LTL +A0 = EKTL- (10)

data and a map. The definitions of Ml and SMI are shown . . o
in Eq. (2) and (3). Here,we approximated the expectations by empirical aver-

ages and af, regularization term was added to avoid overfit-
ting. The dimensions of matricds and L aren xb, and their

MI(X,Y) := //p(;p, y) log ded% (2) elements are given bi;; = K (x;,%;), Liy = Ly, 5™).
p(z)p(y) Gaussian kernel width and regularization parametarcan
1 p(z,y) 2 be determined by cross-validation. Finally, the estimated SMI
SMI(X,Y) = 5 //p(x)p(y) (p(m)p(y) —1) dxdy. is given as follows
1 - 1
LSMI = — tr(KO®LT) — =. (11)
SMI can be used as an alternative dependence measure; 2n o 2 .
random variablesY andY are statistically independent if ~We use thek-fold cross-validation & = 5 in our
and only if SMI(X,Y) is equal to zero. SMI has several€xperiments) to determine and A. The input data is split
advantages over original Ml [17]: into K disjoint sets. Each set is in turn used as test data

. Better robustness against outliers. Because SMI dog8d the rest of the data is used to estimate paraneter
not have logarithm The squared error (Eq. (9)) is evaluated for each set. Hyper

. Computationally efficient estimator is known parameters that minimize the average error are chosen from
several candidates.

B. Estimating SMI Using LSMI IV. APPLICATION

Our method employs a recent technique on SMI estimation In this section, we describe how to apply our method to

(LSMI [18]). We briefly review the method. implement a localization system. The first two subsections
A naive way to estimate Eq. (3) is to estimate all CoMyetaj how to handle different sensor configurations to asso-
ponentsp(z), p(y)', and p(z, y) individually and substitute cjate ohservations with a map. The last describes how our

them in Eq. (3). However, this approach would result in,athod can be used for position tracking.
large estimation errors because estimation errors in each

component can be combined and magnified. In LSMI, wé. Local Grid Map Matching

estimate density ratio This implementation employs a 2D grid map of observed
features. The robot is assumed to have a 3D sensor such
_ pz,y)
r(z,y) = @) (4) as a laser scanner and a stereo camera. A 3D local map of

the environment around the robot is constructed and features
directly (without estimating each component) to improvesuch as height and color are extracted. The ground plane
accuracy and robustness. The density ratis modeled by is divided into grid cells and the extracted features are
a multiplicative kernel model as shown in Eq. (5). projected onto them to generate a 2D grid map. We denote
b the features contained in theth cell of the grid map by
re(z,y) == Z Z @l,z'K(x,iz)L(y@l(f”)) (5) - Then, correspondence between the cells and street map

=1 =1 is made by translating the local grid map using the current



B 2 3 Segment D | 2) Computationally Efficient Implementatio@alculation

 _ 1 N of LSMI itself is computationally efficient; however, the
yzw) B 2, process of cross-validation consumes a considerable amount

X1 | %y | %3 | X4 | x5 | yi : =2 w of time. This can be a hindrance to implement a real-time
s =2 (b) system. In our implementation, we reduce the number of
yi" =2 cross-validation procedures. We augment the state vector of

i y$ =3 . 45  a particles by appending hyper parametersand \.
Robot pose W = (Wg, Wy, Wo) 5 } Si = (wia 04, /\Z) (15)
(2) (c) The very first update step, we perform cross-validation for

all particles and store the chosen parameters to their state
Fig. 4. Examples of associating sensor data with street maps. (a) featud@Ctor. In the subsequent update, we defirecaiction rate
stored in a local grid map are matched with a map. (b) segment IDs in thgnd randomly choose particles for which we Skip Cross-
map. (c) segment IDs projected onto the image plane. validation. For example, if the reduction rate is set to 70%,

we perform cross-validation for only 30% of particles and
robot pose hypothesie = (w,,w,,ws). The segment ID We reuse the prevﬁously chgsen hyper parameters for the rest
that corresponds ta; is denoted byygw) (see Fig. 4 (a)). of partlc_les. _By using this _trlck, we can gnlformly reduce th_e
The input data pairé(z1, ygw)), o (T, yr(zw))} are obtained Processing time by changing the reduction rate while keeping

through this process. We search for the optimdly Eq. (1). the each update time constant.
V. EVALUATION

B. Localization from a Single Image In this section we demonstrate the performance of our
method by four experiments using three data sets collected
o urban environments. Experiments shown in this paper are
I%Immarized in Tab. II.

Localization can also be achieved using a single image.
this implementation, we use a monocular camera mount
on the robot and assume that the relative pose of the camé
with respect to the robot is known. A. 2-DoF Localization Using Single Images

Features such as color and texture are extracted from theFirst, we evaluated the effectiveness of SMI as a measure

image and handl_ed in a pixel-wise manner. The set of fe%’f localization. 37 images of urban scene (32 from sidewalks
tures for thei-th pixel is denoted by:;. The correspondence

w- A screen capture of Google Map was saved as an image

and closed regions are extracted manually. Then, boundary
C. Integrating into a Particle Filter lines are extracted by an edge detection algorithm. Finally,

1) Formulation: Particle filters that fuse observations and%mque IDs are assigned by the flood-fill algorithm [20]
s

the robot's motion estimation are widely used for robu

L?]Zizggggnogltg]e [slirtlirgléh;ﬁtesreﬁg?nng vg?vlflescrlbe an Imple'respe_ct to road) localization using.sin_gle images. The reason
- o we did not perform 3-DoF localization is that 2D street
I_n each_ pred|c_t|on ;tep of the parUcI(_a filter, the rObO}naps are often non-discriminative in longitudinal direction
estimates its motion, since the previous time step (€.9. by, |gngitudinal position can be easily estimated by robot's
odometry). Particles are drawn from a proposal d'smbunor?notion estimation. A grid search was used to find the
position that maximizes Eqg. (1). The search ranges were
—2m to +2m with interval of 0.2m for lateral offset and

) ] ] —20deg to+20deg with interval of2deg for orientation.
In the update steps of the particle filter, particles are resam- gice no existing method is known to be able to perform

pled_ according to the weight proportional to the observatiop.ajization in the same setup, we implemented a compar-

likelihood as follows ative method which is based on road boundary matching.

Road boundaries were detected by the road detection method
of Kong et al. 2 [21], which uses vanishing point detection

ig. 5 illustrates the procedure.
We conducted 2-DoF (lateral position and orientation with

w; ~ P(wt|w£71,ut). (12)

W; o< P(X |w;, M). (13)

The map is denoted by/. We calculate SMI for each  1other maps such as OpenStreetMap can also be used. In this paper we

particle and interpret the value as the observation likelihoogimployed Google Map because, for our target area, it provided much more
accurate sidewalk information compared to OpenStreetMap.

2We used the code downloaded fromitp://web.mit.edu/
P(X|w;, M) = SMI(X, Yy, ). (14) huikong/www/code.html



TABLE Il
LIST OF EXPERIMENTS METHODS AND DATA SETS

TABLE |
FEATURES USED IN SINGLE IMAGE

LOCALIZATION EXPERIMENTS Section |  Type of experiments | Methodsapplied | Dataset
Category| Feature V-A Singleimage localization IV-B 37 images
Colgr y R G B V-B Positiontracking IV-A, IV-C Velodyne scans, 150m odometry
: L : : V-C.1 | Singleimage localization IV-B .
Gradient | Sobelmagnitude, orientation Ve Posfiontracking VB IV-C 4,556images, 4.1km odometry
\\ /// j: ayerage = 0.45m j: alerage = 4.3deg j: average = 0.87m j: average = 5.7deg
\7 ,"(/ 10 10 10 10

) 5 5 5 5
| //
N7 0 0.5 1 15 0 5 10 15 2 0 0.5 1 15 2 0 5 10 15 20
"- / position error [m] orientation error [deg] position error [m] orientation error [deg]
‘ a (a) Proposed method (b) Road boundary matching

(@ (b) (c) (d) , _ _, , i , )
Fig. 6. Histograms of position and orientation errors from single image

Fig. 5. lllustration of map generation procedure. (a) Original map imagéocalization experiments using 37 images.

captured from Google Map. (b) Manually extracted closed regions. (c)

Boundary lines are detected by an edge-detection algorithm. (d) Unique

IDs are assigned by the flood-fill algorithm [20]. Different colors indicateposition tracking experiments. We collected log data of

different IDs. odometry, laser measurements and Real Time Kinematic
(RTK) GPS in a 150m pathway in Narashino, Japan, by
and does not use any prior information about color or textunmanually navigating a wheel-chair robot (Fig. 8 left). Lo-
of the road. The detected road boundaries were matched wihlization experiments were conducted off-line using the
lines in the map. Robot positions where boundary lines matctollected data.
best were found by the same grid search mentioned above.To correlate sensor data with the map, local grid maps
The results are summarized in Fig. 6. Our method outpewere generated at 1 Hz by dividing the ground plane around
formed the road matching method in terms of localizatiothe robot into square cells. The laser measurements were
accuracy. The average position and orientation errors weagcumulated for one second to generate a 3D point cloud.
0.64m and 6.5deg. The resolution of the map was approXhe points in the cloud were projected onto the ground,
imately 23.5cm per pixel and the position error appears and stored in the grid cells. The size of the grid cells was
2.7 pixels in the map. We consider the localization accuraaypatched with the map resolution (23.5cm). For each cell in
reasonable because the localization error includes errorsthe grid mapey, ..., ¢,, the minimal value and the variance of
the map and the street map was not pixel-wise accurate. the point heights were calculated and used as 2-dimensional
Exemplary results are shown in Fig. 7, with LSMI plotsinput featuresey, ..., z,,.
against position and orientation errors (rightmost column). The result of position tracking is shown in Fig. 8 right.
Successful examples for both methods are (a) and (b). Thecan be seen that our method successfully corrected the
LSMI plot (a) shows a clear peak around the ground trutbdometry errors and kept track of the robot position. We
position. While the road detection method failed on (c, devaluated the localization accuracy using GPS as the ground
e) because of the confusing salient edges in the images, dwth. The root mean square (RMS) error of the estimated
method successfully localized them. Braille blocks causetajectory was 0.59m (approximately 2.5 pixels in the map).
several localization failures. Two peaks can be seen in the We compared the processing time of particle filter update
plot of (f); the highest peak appeared at the ground truth arahd the localization accuracy with different reduction rates
the second highest one matched the Braille blocks. Sonfef. Section IV-C.2). Fig. 9 summarizes the results. The esti-
of the localization errors were caused by map errors. Amated trajectory with 80% of the reduction rate is also shown
example of road width errors can be seen in (g). Botin Fig. 8. By reducing 80% of cross-validation procedures,
road detection and our method failed on (h) in whichthe average processing time decreased from 2.9 seconds to
road boundaries were not clear and the feature differenc@s seconds, without significant degradation in localization
were very small between the roadway, the sidewalk and tteecuracy. Our implementation was written in MATLAB and
parking lot. A challenging example on map errors is showthe time was measured on a laptop computer with a 2.4GHz
in (). The left road boundary in the map appears curvedzore i7-5500U CPU. The number of particles employed was
but it is actually not curved. Another challenge is copindg0, and the number of kernel centers used to estimate SMI
with occlusions like (j); our method failed because the blugvas 40.
tarp covering the road had similar color to the vehicle which
appears on the right hand side of the image. C. Experiments Using a Large-scale Data Set

For a large-scale evaluation of our method, we collected
another data set by manually navigating the wheel-chair
We conducted full (3-DoF) localization experiments. Werobot in an urban area in Narashino, Japan. During the 5.8km
integrated our method into a particle filter and conductedavigation, 4,556 images (captured with one second interval),

B. Position Tracking Using a Particle Filter



Input Groundtruth Proposed method

S, p9rs

Road detection [21] LSMI plot

Fig. 7. Exemplary results of localization experiments. Localization results are shown by superimposing the road boundaries to the images. In the maps
the estimated positions and the ground truth positions are indicated in red and blue, respectively. In the comparative method, detected road boundaries
were matched with the map.
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Fig. 10. Histograms of position and orientation errors from single image
localization experiments using the large scale data set. 575 images were
used for evaluation.
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.. Map data ©2014 Google, ZENRIN

Fig. 8. Left: robot used to collect data. It is equipped with a Point Greyj|
Flea3 camera, a Velodyne HDL-32e laser scanner, a gyro and a GPS recei
(Ladybug was not used). Right: result of position tracking experiments. Th
red trajectory shows the result of our method without reduction of cros
validation procedures. The green trajectory shows the result with 80% (
cross-validation reduction.
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Fig.9. Comparison of the processing time of the update and the localizati
error with different cross validation reduction rates. Error bars indicate
standard deviations.

odometry and RTK-GPS logs were collected. Images we
captured by a Point Grey Flea3 camera with a fish-ey
lens. We conducted two kinds of experiments, single imag — — odometry

localization and positing tracking, using the data set. o  GPS(RTK fixed)

s PrOposed

1) Single Image LocalizationWe conducted experiments Map data ©2014 Google, ZENRIN
by the same procedure as described in Section V-A, excer%. 12. Position tracking result using the large-scale data set. Our method
that we used GPS for the ground truth. Since the GP&iccessfully tracked the robot position from the start to point (A) where the
measurements were not always accurate, we manually éxe cdometry log ended (4.1km in the distance).
tracted 575 images with good GPS accuracy for evaluation.
The results of single image localization experiments are VI. CONCLUSIONS

summarized in Fig. 10, and exemplary results are shownIn this paper, we presented a novel method for street

in Fig. 11. The number of |mages_locallzed within 1m anqa;ap-based localization. Matching sensor data with a street
10deg of errors was 388 (67%) with the propo_sed metho ap arises as an issue in environments where road bound-
and 211 (34%) W'th.the road boundary matchmg metho.%lries cannot be easily detected. Our method overcomes the
The accuracy was _sllghtly worse th:_;m the result; n SeCt'qgsue using a statistical dependence measure. Localization
V-A. The adverse illumination conditions (see F'Q- 1 (b))s performed through maximization of Squared-loss Mutual
would be the cause of the performance degradation. Information. Unlike previous methods, our method requires
2) Position Tracking: We implemented a particle filter no prior information about the environment. The validity of

that fuses odometry and image measurements. The partithe proposed method is supported by experiments using real-
filter update was executed for every image observation (oneorld image and laser data sets. It is also shown that our im-
second interval). Fig. 12 shows the result of the positioplementation is efficient enough for autonomous navigation
tracking. Our proposed method successfully kept track afse.

the robot during the 4.1km of run from the start point to the Further research could include feature extraction. In this
point (A) shown in the figure. Unfortunately, the odometrypaper, we have used rather simple features; however, more
log ended at the point because of a system malfunction. TlBephisticated set of features should be explored for robust
RMS error of the estimated trajectory against the GPS ldgcalization. Another significant concern is handling of map
was 1.6m (note that the GPS log also contained some errorsjrors. We expect that small errors in a map can be addressed
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(a) successful examples

1Ly

(b) unsuccessful examples

Exemplary results of single image localization experiments using the large image data set. The first rows show input images and the second
rows show localization results by superimposing the road boundaries. The third rows show estimation results (red) and ground truth positions (blue).

Fig. 11.

by deforming local grid maps. [9]
Since our method is general and not restricted on the road,
it should be able to be applied to localization of other typesg,
of robots such as flying robots. While our method still has
many issues to be addressed, we believe it is a S|gn|f|cant
step towards street map-based localization. (11
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