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Abstract— In this paper, we present a novel approach to 2D
street map-based localization for mobile robots that navigate
mainly in urban sidewalk environments. Recently, localization
based on the map built by Simultaneous Localization and
Mapping (SLAM) has been widely used with great success.
However, such methods limit robot navigation to environments
whose maps are prebuilt. In other words, robots cannot navigate
in environments that they have not previously visited. We
aim to relax the restriction by employing existing 2D street
maps for localization. Finding an exact match between sensor
data and a street map is challenging because, unlike maps
built by robots, street maps lack detailed information about
the environment (such as height and color). Our approach to
coping with this difficulty is to maximize statistical dependence
between sensor data and the map, and localization is achieved
through maximization of a Mutual Information-based criterion.
Our method employs a computationally efficient estimator of
Squared-loss Mutual Information through which we achieved
near real-time performance. The effectiveness of our method
is evaluated through localization experiments using real-world
data sets.

I. INTRODUCTION

We aim to realize autonomous navigation of mobile robots
in urban sidewalk environments. Over the past few decades,
mobile robot navigation has been studied intensively, and
several authors have reported successful autonomous naviga-
tion in large-scale real environments [1] [2]. However, their
localization methods use precise maps of the environment
built by Simultaneous Localization and Mapping (SLAM)
techniques, in which sensor data are typically collected by
manually operated robots. The cost involved in the construc-
tion and maintenance of such maps will increase rapidly as
the size of the environment increases. This research aims to
develop a localization system for a mobile robot by using
existing street maps. The utilization of existing street maps
eliminates the additional cost required for building maps
that are dedicated to robots, and enables them to localize
themselves in unfamiliar environments.

One of the significant challenges in using 2D street maps
for localization is matching sensor data with a map. This
complexity did not influence traditional robot localization
because, the robot localizes itself on a map built from its
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Fig. 1. Concept diagram of our localization method.

onboard sensor data [3] [4] [5]. Such maps are easy to be
matched with sensor data collected during navigation.

However, typical 2D street maps do not provide detailed
information about the environment. For example, we cannot
predict colors of the road or the height of the curbs between
roadways and sidewalks or even the existence of curbs from
street maps. This makes correlating sensor data with maps
difficult.

Majority of existing street map-based localization methods
are designed for assisting human car drivers (e.g. car naviga-
tion systems) [6] [7] [8] [9]. Such methods are not influenced
by the abovementioned difficulty because, localization is per-
formed by matching a vehicle trajectory with road network
information extracted from street maps, assuming that the
vehicle is always on the road network. However, the precise
position with respect to the road, which is crucial information
for autonomous navigation, cannot be estimated.

Although several authors have already proposed using
street maps for localization aiming to autonomous naviga-
tion, their methods are somewhat limited because of not
addressing the matching issue. For example, Chausseet al.
proposed to detect lane markings from images and match
them with the map [10]. Moraleset al. proposed to detect
road center by laser measurements and match them with
the map [11]. Those methods are not directly applicable
to varying sidewalk environments where robust detection
of road boundaries is not straightforward. Hentschel and
Wagner proposed to detect building boundaries and match
them with the map [12]. The advantage of using building
boundaries is that they can be easily detected by a laser scan-
ner. However, the method is only applicable in environments
where buildings are sufficiently observable.

On the other hand, the matching issue was discussed by
Irie and Tomono [13], in their paper they proposed a method
that combines prior information and object recognition to
match sensor data with a street map. The method exploits
prior knowledge about objects existing in the environment.
The knowledge is expressed as prior probabilities bundled
with semantic labels in the map such asroadway and
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Fig. 2. Left: an example of maps used in proposed method. Right: internal
representation of the map. Different colors indicate different IDs.

building. The limitation of their method is, however, that it
is not applicable to unfamiliar environments where we have
no prior information about the kind of existing objects or
their appearance.

In this paper, we propose a novel localization framework
that relaxes the limitations in the previous methods. Our
method does not explicitly detect road boundaries nor use
prior information. Instead, sensor data is directly matched
to a map using a variant of Mutual Information (MI).
The concept of our method, which is inspired by image
registration using MI, is depicted in Fig. 1. Although MI
has already been used to register multimodal sensor data
[14] [15] [16], to our knowledge, it has never been applied
to street map-based localization. Since the calculation of
the original MI is computationally expensive, we employ a
squared-loss version of MI for efficient computation.

The differences between our method and existing methods
are summarized as follows:

• We do not assume that the robot is always on the road.
• Neither road boundaries nor building boundaries are

explicitly detected.
• No prior information e.g. color, texture, or height of

objects in the environment is required.
• No other information besides boundary lines is required

for the map. This implies that our method does not care
whether a region in the map is a road or a building or
anything else.

We evaluated our system through experiments using real-
world data sets. We demonstrate that our method enables near
real-time, 2D street map-based localization without using
prior information.

II. PROPOSED METHOD

A. Model of the World and Representation of Maps

Our method uses 2D street maps consisting of boundary
lines as shown in Fig. 2 left. We extract segments of
boundary lines and closed regions and assign them unique
IDs as shown in Fig. 2 right. In this paper, we call these IDs
segment IDs.

The procedure is motivated by our model of the world
(Fig. 3). We consider the problem of estimating the position
of a robot when it observes sensor data fromn places
in the environment. We denote features extracted from the
sensor data by{x1, . . . , xn}. Localization can be achieved by
determining the locations from where the sensor data arises.
If we have information regarding the relationship between
X and map segmentY (e.g. P (X|Y )), the solution is
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Fig. 3. Model of the world. Sensor data and street map have implicit
dependency through objects in the world.

straightforward. The method described in [13] finds implicit
relationship betweenX andY under assumptions that some
knowledge (i.e.P (Z|Y ) andP (X|Z)) are given in advance.
However, these probabilities vary depending on the places.
For example, appearance ofroad varies from country to
country; hence,P (X|Z = road) also varies.

Therefore, we take a completely different approach, where
we find the dependency betweenX andY . We assume that
segments in mapsY are defined according to the type of
objectsZ (e.g. road, buildings, etc.); i.e., it is expected that
the same type of objects exist in areas with the same segment
ID. Naturally, features from sensor dataX depends on ob-
jectsZ being observed; hence, there are latent dependencies
betweenX andY . Therefore, if the correspondence between
X andY is correct, certain dependency betweenX andY
should be observed.

B. Mutual Information as a Localization Metric

We propose to employ an MI-based dependence measure
to correlate sensor data and a map. MI has been conven-
tionally used for registration of multi-modal images [14].
A standard approach such as Normalized Cross Correlation
(NCC) can be used to register normal (unimodal) images
as they typically havelinear dependency between their in-
tensity values. Maximization of NCC leads to maximization
of linear dependence between pixel values in two images.
However, this is not always true when the two images are
of different modalities (e.g. MRI and CT in medical imag-
ing). Registration is performed by maximizing MI, which
corresponds to maximizingnon-linear dependence between
pixel intensity values. Our method applies this idea to mobile
robot localization, where we match sensor data to a map by
finding non-lineardependency between them.

The procedure of our method is as follows. First, the robot
collects sensor data to extract features fromn different places
in the environment. We denote the set ofd-dimensional
features by{x1, . . . , xn}. It is assumed that relative positions
between the robot and the sensor data are known. Second,
correspondence between the extracted features and a map is
made using the robot pose hypothesisw. Segment ID that
corresponds toxi is denoted byyi. Finally, we obtainn
paired input data{(x1, y

(w)
1 ), ..., (xn, y

(w)
n )}.

Features and map segment IDs are denoted by random
variablesX and Y (w). By assuming that the input data
is randomly generated from a joint probability distribution
P (X,Y (w)), we search forw that maximizes a functionf



that measures dependence, to localize a robot.

ŵ = argmax
w

f(X,Y (w)) (1)

We propose to use SMI, a variant of MI, as the measure
f [17]. The definition and estimation of SMI are detailed in
Section III.

In this paper, we focus on 2D position tracking; we
estimate the 2D position and orientation of the robot during
navigation under the assumption that the initial position of
the robot is known (with some errors).

III. E STIMATION OF SQUARED-LOSSMUTUAL

INFORMATION

A. Squared-loss Mutual Information

Mutual Information (MI) is a measure of statistical depen-
dence between random variables and has been used to find
dependencies in data. Medical image registration is one of
the well-known applications of MI [14]. In our method, we
employ Squared-loss Mutual Information (SMI), instead of
the original MI, to measure the dependence between sensor
data and a map. The definitions of MI and SMI are shown
in Eq. (2) and (3).

MI(X,Y ) :=

∫∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy, (2)

SMI(X,Y ) :=
1

2

∫∫
p(x)p(y)

(
p(x, y)

p(x)p(y)
− 1

)2

dxdy.

(3)

SMI can be used as an alternative dependence measure;
random variablesX and Y are statistically independent if
and only if SMI(X,Y ) is equal to zero. SMI has several
advantages over original MI [17]:

• Better robustness against outliers. Because SMI does
not have logarithm

• Computationally efficient estimator is known

B. Estimating SMI Using LSMI

Our method employs a recent technique on SMI estimation
(LSMI [18]). We briefly review the method.

A naive way to estimate Eq. (3) is to estimate all com-
ponentsp(x), p(y)’, and p(x, y) individually and substitute
them in Eq. (3). However, this approach would result in
large estimation errors because estimation errors in each
component can be combined and magnified. In LSMI, we
estimate density ratio

r(x, y) =
p(x, y)

p(x)p(y)
(4)

directly (without estimating each component) to improve
accuracy and robustness. The density ratior is modeled by
a multiplicative kernel model as shown in Eq. (5).

rΘ(x, y) :=
b∑

l=1

b∑
l′=1

Θl,l′K(x, x̃l)L(y, ỹ
(w)
l′ ) (5)

The parameter to estimateΘ is a matrix ofb × b (b ≤ n)
and each element in it is denoted byΘl,l′ . Kernel centers
(x̃1, ..., x̃b and ỹ(w)

1 , ..., ỹ
(w)
b ) are randomly chosen from the

input data. We use the Gaussian kernel forK and the delta
kernel forL as shown below.

K(x, x̃) = exp

(
−||x− x̃||2

2σ2

)
(6)

L(y, ỹ) =

{
1, if y = ỹ

0, otherwise
(7)

The parameter̂Θ is learned to minimize the squared error
in Eq. (9).

min
Θ

J(Θ), (8)

J(Θ) :=

∫∫
(rΘ(x, y)− r(x, y))2p(x)p(y)dxdy. (9)

The minimizer is obtained by solving the following dis-
crete Sylvester equation

1

n2
KTKΘ̂LTL+ λΘ̂ =

1

n
KTL. (10)

Here,we approximated the expectations by empirical aver-
ages and anℓ2 regularization term was added to avoid overfit-
ting. The dimensions of matricesK andL aren×b, and their
elements are given byKi,l = K(xi, x̃l), Li,l = L(yi, ỹ

(w)
l ).

Gaussian kernel widthσ and regularization parameterλ can
be determined by cross-validation. Finally, the estimated SMI
is given as follows

LSMI =
1

2n
tr(KΘ̂LT )− 1

2
. (11)

We use theK-fold cross-validation (K = 5 in our
experiments) to determineσ and λ. The input data is split
into K disjoint sets. Each set is in turn used as test data
and the rest of the data is used to estimate parameterΘ.
The squared error (Eq. (9)) is evaluated for each set. Hyper
parameters that minimize the average error are chosen from
several candidates.

IV. APPLICATION

In this section, we describe how to apply our method to
implement a localization system. The first two subsections
detail how to handle different sensor configurations to asso-
ciate observations with a map. The last describes how our
method can be used for position tracking.

A. Local Grid Map Matching

This implementation employs a 2D grid map of observed
features. The robot is assumed to have a 3D sensor such
as a laser scanner and a stereo camera. A 3D local map of
the environment around the robot is constructed and features
such as height and color are extracted. The ground plane
is divided into grid cells and the extracted features are
projected onto them to generate a 2D grid map. We denote
the features contained in thei-th cell of the grid map by
xi. Then, correspondence between the cells and street map
is made by translating the local grid map using the current
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Fig. 4. Examples of associating sensor data with street maps. (a) features
stored in a local grid map are matched with a map. (b) segment IDs in the
map. (c) segment IDs projected onto the image plane.

robot pose hypothesisw = (wx, wy, wθ). The segment ID
that corresponds toxi is denoted byy(w)

i (see Fig. 4 (a)).
The input data pairs{(x1, y

(w)
1 ), ..., (xn, y

(w)
n )} are obtained

through this process. We search for the optimalw by Eq. (1).

B. Localization from a Single Image

Localization can also be achieved using a single image. In
this implementation, we use a monocular camera mounted
on the robot and assume that the relative pose of the camera
with respect to the robot is known.

Features such as color and texture are extracted from the
image and handled in a pixel-wise manner. The set of fea-
tures for thei-th pixel is denoted byxi. The correspondence
between segment IDs and pixels is made by projecting the
street map onto the image plane (Fig. 4 (b) and (c)). After
the input data pairs are obtained, we search for the optimal
w.

C. Integrating into a Particle Filter

1) Formulation: Particle filters that fuse observations and
the robot’s motion estimation are widely used for robust
localization [19] [2]. In this section we describe an imple-
mentation of the particle filter using SMI.

In each prediction step of the particle filter, the robot
estimates its motionut since the previous time step (e.g. by
odometry). Particles are drawn from a proposal distribution

wi ∼ P (wt|wt−1
i , ut). (12)

In the update steps of the particle filter, particles are resam-
pled according to the weight proportional to the observation
likelihood as follows

Wi ∝ P (X|wi,M). (13)

The map is denoted byM . We calculate SMI for each
particle and interpret the value as the observation likelihood

P (X|wi,M) = SMI(X,Ywi). (14)

2) Computationally Efficient Implementation:Calculation
of LSMI itself is computationally efficient; however, the
process of cross-validation consumes a considerable amount
of time. This can be a hindrance to implement a real-time
system. In our implementation, we reduce the number of
cross-validation procedures. We augment the state vector of
a particles by appending hyper parametersσ andλ.

si = (wi, σi, λi). (15)

The very first update step, we perform cross-validation for
all particles and store the chosen parameters to their state
vector. In the subsequent update, we define areduction rate
and randomly choose particles for which we skip cross-
validation. For example, if the reduction rate is set to 70%,
we perform cross-validation for only 30% of particles and
we reuse the previously chosen hyper parameters for the rest
of particles. By using this trick, we can uniformly reduce the
processing time by changing the reduction rate while keeping
the each update time constant.

V. EVALUATION

In this section we demonstrate the performance of our
method by four experiments using three data sets collected
in urban environments. Experiments shown in this paper are
summarized in Tab. II.

A. 2-DoF Localization Using Single Images

First, we evaluated the effectiveness of SMI as a measure
of localization. 37 images of urban scene (32 from sidewalks
and 5 from roadways) were used for evaluation. The features
shown in Tab. I were extracted from images and used as the
input data. The ground truth positions were given manually.

The street map we used was generated from Google Map1.
A screen capture of Google Map was saved as an image
and closed regions are extracted manually. Then, boundary
lines are extracted by an edge detection algorithm. Finally,
unique IDs are assigned by the flood-fill algorithm [20].
Fig. 5 illustrates the procedure.

We conducted 2-DoF (lateral position and orientation with
respect to road) localization using single images. The reason
we did not perform 3-DoF localization is that 2D street
maps are often non-discriminative in longitudinal direction
and longitudinal position can be easily estimated by robot’s
motion estimation. A grid search was used to find the
position that maximizes Eq. (1). The search ranges were
−2m to +2m with interval of 0.2m for lateral offset and
−20deg to+20deg with interval of2deg for orientation.

Since no existing method is known to be able to perform
localization in the same setup, we implemented a compar-
ative method which is based on road boundary matching.
Road boundaries were detected by the road detection method
of Kong et al. 2 [21], which uses vanishing point detection

1Other maps such as OpenStreetMap can also be used. In this paper we
employed Google Map because, for our target area, it provided much more
accurate sidewalk information compared to OpenStreetMap.

2We used the code downloaded fromhttp://web.mit.edu/
huikong/www/code.html .



TABLE I

FEATURES USED IN SINGLE IMAGE

LOCALIZATION EXPERIMENTS

Category Feature
Color R, G, B

Gradient Sobelmagnitude, orientation

TABLE II

L IST OF EXPERIMENTS, METHODS AND DATA SETS

Section Type of experiments Methodsapplied Dataset

V-A Single image localization IV-B 37 images
V-B Positiontracking IV-A, IV-C Velodyne scans, 150m odometry

V-C.1 Single image localization IV-B
4,556images, 4.1km odometry

V-C.2 Positiontracking IV-B, IV-C

(a) (b) (c) (d)

Fig. 5. Illustration of map generation procedure. (a) Original map image
captured from Google Map. (b) Manually extracted closed regions. (c)
Boundary lines are detected by an edge-detection algorithm. (d) Unique
IDs are assigned by the flood-fill algorithm [20]. Different colors indicate
different IDs.

and does not use any prior information about color or texture
of the road. The detected road boundaries were matched with
lines in the map. Robot positions where boundary lines match
best were found by the same grid search mentioned above.

The results are summarized in Fig. 6. Our method outper-
formed the road matching method in terms of localization
accuracy. The average position and orientation errors were
0.64m and 6.5deg. The resolution of the map was approx-
imately 23.5cm per pixel and the position error appears as
2.7 pixels in the map. We consider the localization accuracy
reasonable because the localization error includes errors in
the map and the street map was not pixel-wise accurate.

Exemplary results are shown in Fig. 7, with LSMI plots
against position and orientation errors (rightmost column).
Successful examples for both methods are (a) and (b). The
LSMI plot (a) shows a clear peak around the ground truth
position. While the road detection method failed on (c, d,
e) because of the confusing salient edges in the images, our
method successfully localized them. Braille blocks caused
several localization failures. Two peaks can be seen in the
plot of (f); the highest peak appeared at the ground truth and
the second highest one matched the Braille blocks. Some
of the localization errors were caused by map errors. An
example of road width errors can be seen in (g). Both
road detection and our method failed on (h) in which
road boundaries were not clear and the feature differences
were very small between the roadway, the sidewalk and the
parking lot. A challenging example on map errors is shown
in (i). The left road boundary in the map appears curved,
but it is actually not curved. Another challenge is coping
with occlusions like (j); our method failed because the blue
tarp covering the road had similar color to the vehicle which
appears on the right hand side of the image.

B. Position Tracking Using a Particle Filter

We conducted full (3-DoF) localization experiments. We
integrated our method into a particle filter and conducted
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Fig. 6. Histograms of position and orientation errors from single image
localization experiments using 37 images.

position tracking experiments. We collected log data of
odometry, laser measurements and Real Time Kinematic
(RTK) GPS in a 150m pathway in Narashino, Japan, by
manually navigating a wheel-chair robot (Fig. 8 left). Lo-
calization experiments were conducted off-line using the
collected data.

To correlate sensor data with the map, local grid maps
were generated at 1 Hz by dividing the ground plane around
the robot into square cells. The laser measurements were
accumulated for one second to generate a 3D point cloud.
The points in the cloud were projected onto the ground,
and stored in the grid cells. The size of the grid cells was
matched with the map resolution (23.5cm). For each cell in
the grid mapc1, ..., cn, the minimal value and the variance of
the point heights were calculated and used as 2-dimensional
input featuresx1, ..., xn.

The result of position tracking is shown in Fig. 8 right.
It can be seen that our method successfully corrected the
odometry errors and kept track of the robot position. We
evaluated the localization accuracy using GPS as the ground
truth. The root mean square (RMS) error of the estimated
trajectory was 0.59m (approximately 2.5 pixels in the map).

We compared the processing time of particle filter update
and the localization accuracy with different reduction rates
(cf. Section IV-C.2). Fig. 9 summarizes the results. The esti-
mated trajectory with 80% of the reduction rate is also shown
in Fig. 8. By reducing 80% of cross-validation procedures,
the average processing time decreased from 2.9 seconds to
0.7 seconds, without significant degradation in localization
accuracy. Our implementation was written in MATLAB and
the time was measured on a laptop computer with a 2.4GHz
Core i7-5500U CPU. The number of particles employed was
50, and the number of kernel centers used to estimate SMI
was 40.

C. Experiments Using a Large-scale Data Set

For a large-scale evaluation of our method, we collected
another data set by manually navigating the wheel-chair
robot in an urban area in Narashino, Japan. During the 5.8km
navigation, 4,556 images (captured with one second interval),
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Fig. 7. Exemplary results of localization experiments. Localization results are shown by superimposing the road boundaries to the images. In the maps
the estimated positions and the ground truth positions are indicated in red and blue, respectively. In the comparative method, detected road boundaries
were matched with the map.
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odometry and RTK-GPS logs were collected. Images were
captured by a Point Grey Flea3 camera with a fish-eye
lens. We conducted two kinds of experiments, single image
localization and positing tracking, using the data set.

1) Single Image Localization:We conducted experiments
by the same procedure as described in Section V-A, except
that we used GPS for the ground truth. Since the GPS
measurements were not always accurate, we manually ex-
tracted 575 images with good GPS accuracy for evaluation.
The results of single image localization experiments are
summarized in Fig. 10, and exemplary results are shown
in Fig. 11. The number of images localized within 1m and
10deg of errors was 388 (67%) with the proposed method,
and 211 (34%) with the road boundary matching method.
The accuracy was slightly worse than the results in Section
V-A. The adverse illumination conditions (see Fig. 11 (b))
would be the cause of the performance degradation.

2) Position Tracking: We implemented a particle filter
that fuses odometry and image measurements. The particle
filter update was executed for every image observation (one
second interval). Fig. 12 shows the result of the position
tracking. Our proposed method successfully kept track of
the robot during the 4.1km of run from the start point to the
point (A) shown in the figure. Unfortunately, the odometry
log ended at the point because of a system malfunction. The
RMS error of the estimated trajectory against the GPS log
was 1.6m (note that the GPS log also contained some errors).
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(a) Proposed method (b) Road boundary matching

Fig. 10. Histograms of position and orientation errors from single image
localization experiments using the large scale data set. 575 images were
used for evaluation.
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Fig. 12. Position tracking result using the large-scale data set. Our method
successfully tracked the robot position from the start to point (A) where the
the odometry log ended (4.1km in the distance).

VI. CONCLUSIONS

In this paper, we presented a novel method for street
map-based localization. Matching sensor data with a street
map arises as an issue in environments where road bound-
aries cannot be easily detected. Our method overcomes the
issue using a statistical dependence measure. Localization
is performed through maximization of Squared-loss Mutual
Information. Unlike previous methods, our method requires
no prior information about the environment. The validity of
the proposed method is supported by experiments using real-
world image and laser data sets. It is also shown that our im-
plementation is efficient enough for autonomous navigation
use.

Further research could include feature extraction. In this
paper, we have used rather simple features; however, more
sophisticated set of features should be explored for robust
localization. Another significant concern is handling of map
errors. We expect that small errors in a map can be addressed



(a) successful examples

(b) unsuccessful examples
Fig. 11. Exemplary results of single image localization experiments using the large image data set. The first rows show input images and the second
rows show localization results by superimposing the road boundaries. The third rows show estimation results (red) and ground truth positions (blue).

by deforming local grid maps.
Since our method is general and not restricted on the road,

it should be able to be applied to localization of other types
of robots such as flying robots. While our method still has
many issues to be addressed, we believe it is a significant
step towards street map-based localization.
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