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Recently, localization methods based on detailed maps constructed using simultaneous localization
and mapping has been widely used for mobile robot navigation. However, the cost of building such
maps increases rapidly with expansion of the target environment. Here, we consider the problem of
localization of a mobile robot based on existing 2D street maps. Although a large amount of research
on this topic has been reported, the majority of the previous studies have focused on car-like vehicles
that navigate on roadways; thus, the efficacy of such methods for sidewalks is not yet known. In this
paper, we propose a novel localization approach that can be applied to sidewalks. Whereas roadways
are typically marked, e.g., by white lines, sidewalks are not and, therefore, road boundary detection
is not straightforward. Thus, obtaining exact correspondence between sensor data and a street map
is complex. Our approach to overcoming this difficulty is to maximize the statistical dependence
between the sensor data and the map, and localization is achieved through maximization of a mutual-
information-based criterion. Our method employs a computationally efficient estimator of squared-loss
mutual information, through which we achieve near real-time performance. The efficacy of our method
is evaluated through localization experiments using real-world datasets.
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1. Introduction

This paper considers the problem of mobile robot localization. Recently, localization methods
based on detailed maps constructed using simultaneous localization and mapping (SLAM) have
been widely used with great success [I] [2]. However, the construction of such maps is very
costly, because the necessary data collection involves a manual procedure (e.g., manual robot
navigation). This cost can be eliminated by reusing existing street maps. Localization using
street maps has primarily been studied with regard to roadways [3] [4], but no methods that
are effective for sidewalks have been reported. One of the difficulties with regard to sidewalks is
that road boundaries are not clearly marked; road boundary detection can be even more difficult
than localization. However, localization is possible without road boundary detection. Here, we
present a novel localization approach referred to as dependence maximization localization, which
was inspired by multi-modal image registration.
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The method presented in this paper localizes a robot by maximizing the latent dependence
between sensor data and a street map. Squared-loss mutual information (SMI), a variant of
mutual information (MI) is employed to measure this dependence.

1.1 Related Work

Existing street-map-based localization methods can be classified into two categories. Methods
designed to assist human car drivers and those for autonomous navigation. Typical applications
within the first category are car navigation systems and advanced driver assistance systems
(ADAS). A typical localization approach employed in such cases is to match a vehicle’s trajectory
with road network information extracted from street maps, assuming that the vehicle is always
on the road. Methods using global navigation systems (GPS) for trajectory estimation have been
studied for over a decade [3]. Recently, several authors have proposed the use of visual odometry
and global localization without GPS has been shown to be possible [5] [6] [7]. However, the
limitation of this approach is that the precise position with respect to the road, which is crucial
information for autonomous navigation, cannot be estimated.

Although localization using street maps for autonomous navigation has also been studied, the
majority of such studies have focused on roadways. As roadway boundaries are typically clearly
marked, a large number of methods involve matching of the lane marking to the road boundaries
on the map [4] [8]. Highly accurate localization results have been reported in such cases. However,
several authors have proposed methods that do not use lane markings. For example, the method
proposed by Morales et al. [9] estimates the offset between the road center and the robot from
laser measurements. In that method, the road center is estimated from laser measurements
with the assumption that the road boundaries can be determined from the height information.
However, sidewalk environments vary considerably and, in some cases, road boundaries cannot be
estimated from height information alone. Therefore, the above method is not directly applicable
to sidewalks. In contrast, Hentschel and Wagner [10] have proposed a technique through which
building boundaries are detected and correlated with the map. The advantage of using building
boundaries is that they can be easily detected from laser measurements. However, this method is
only applicable in environments where buildings are sufficiently observable and correctly mapped.

The difficulty of localization in sidewalks has been discussed by Irie and Tomono [11]. They
have proposed the application of object recognition to manage varying road boundaries along
sidewalks. In this approach, the recognized objects are matched with object prior probabilities
embedded in the street map (e.g., the likelihood of curbs is high at the boundary between the
sidewalk and roadway). Although this proposed framework is general, object prior probabilities
vary from place to place. Therefore, applying their method to new environments should involve
additional costs to determine the appropriate object prior probabilities.

1.2 Contribution

In this paper we propose a novel method that relaxes the limitations imposed on previous
techniques. That is, our method does not explicitly detect road boundaries or recognize objects.
Instead, sensor observations are directly matched to a map using a variant of MI. Although
MI has already been used to register multi-modal sensor data [12] [I3] [14], to the best of our
knowledge, it has never been applied to street-map-based localization. The advantages of our
method compared to existing methods can be summarized as follows:

e Robot trajectories are not limited within the road network.

e Detection of road or building boundaries is not required.

e No prior information e.g., on the colors, textures, or heights of objects in the environment
is required.

e No other information besides boundary lines is required from the map. This indicates
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that the efficacy of our method is independent of whether or not the regions on the map
correspond to roads, buildings, etc.

Our method is the first to possess all the above characteristics.

In addition to outlining the proposed method, we also describe certain implementation details
that render our method computationally efficient for practical navigation use. We evaluate the
performance of our method via extensive experiments using real-world datasets, and we empiri-
cally demonstrate that SMI exhibits superior functionality among several dependence measures.
Successful results obtained for long distance (up to 4.5 km) position tracking experiments sup-
port the efficacy of the proposed method.

The main contributions of the paper can be summarized as follows:

Introduction of the dependence maximization approach to street-map-based localization.
Computationally efficient implementation of the proposed method.

The finding that SMI has superior functionality among several different dependence mea-
sures.

Empirical demonstrations using real-world datasets showing that our method is both ef-
fective and sufficiently computationally efficient for practical use.

Although the essence of our approach has been presented previously in a conference proceed-
ings [15], this paper expands on the evaluation of our system using additional experiments.

2. Proposed Method

As we employ a 2D street map, our method estimates the 2D pose (position and orientation) of
the robot w = (wg, wy, wy). We are particularly interested in localization for navigation; in this
paper we focus on position tracking under the assumption that the initial position of the robot
is known (with some errors).

2.1 Map Representation

Our method uses 2D street maps consisting of boundary lines as shown in Figure Il (a). During
pre-processing, each closed region and boundary line on the map is given a unique ID. We refer
to the IDs as segment IDs in this paper. Sample segment IDs are shown in Figure [I (b). The
assumption behind this procedure is that map segments are defined according to the objects
in the environment. In other words, we expect that similar objects exist within a segment and
different objects exist in different segments (e.g., ID = 1 corresponds to buildings and ID =
7 corresponds to curbs). Because sensor observations naturally depend on the objects being
observed, sensor data and segment IDs should have a latent dependence. An example of the
latent dependence between sensor data, objects, and the map is depicted in Figure [ (¢). The
proposed method exploits this dependence for robot localization.

2.2 Approach

Our approach was inspired by a method used for image registration problems. One of the well-
known image registration methods is maximization of the normalized cross correlation (NCC).
Maximizing the NCC can be interpreted as maximizing the dependence between the pixel in-
tensities of two images. It is assumed that the same object exhibits similar intensity values in
two images; therefore the pixel intensities of these two images should have linear dependence.
However, if two images are of different modalities (e.g., with regard to the registration of medical
computed tomography (CT) and magnetic resonance (MR) images [16] ) the pixel intensities
can have non-linear dependence. That is, some objects rendered in white in CT images appear
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black in MR images, and others do not. Maximizing MI is known to be effective for this kind of
multi-modal image registration [12] because MI can measure non-linear dependence. Our method
applies this concept to robot localization; the sensor data and map segments may have non-linear
dependence and, thus we maximize the MI-based dependence measure to localize a robot.

2.3 Dependence Maximization Localization

The robot observes n different positions using onboard sensors and features are extracted from
the sensor data (such as colors and shapes). We denote the extracted features by {x;}7 ;. Using
a robot pose hypothesis w, we find the segment IDs that correspond to the segments in which the
features are located; these are denoted by {ygw)}?zl (it is assumed that the relative positions
between the robot and the sensor data source are known). Consequently, we obtain pairs of

(

feature and segment ID {(x;, yiw)) ? 1, which are used as input data.

The features and map segment IDs are denoted by random variables X and Y (®). By assuming
that the input data is randomly generated from a joint probability distribution p(X, Y(“’)), we
search for the hypothesis w that maximizes a dependence measure. The estimated robot pose
w can be obtained by

w = argmax f(X,Y (W), (1)

We employ SMI [17] as the measure function f. The definition and estimation of SMI are detailed
in Section [3]

To facilitate an intuitive understanding of our method, an illustrative example is provided in
Figure 2l In this example, the robot obtains five color features (1, ..., x5), where x1 = xy =
green, 3 = yellow and x4 = x5 = gray. When the robot position is correct (Figure 2 (a)), the
corresponding segment IDs are y; = yo = 1,93 = 2,y4 = y5 = 3. The conditional entropy of the
features given map segment is small, because each segment of the map corresponds to a single
color. Therefore, the dependence between X and Y is high. On the other hand, when the robot
position is incorrect as shown in Figure 2] (b), segment ID = 3 corresponds to multiple colors,
yielding a reduced dependence.

3. Estimation of Squared-loss Mutual Information

We employ a computationally efficient estimator of SMI that was presented by Sakai et al. [18].
In this section we briefly review this method in the interest of completeness.

3.1 Squared-loss Mutual Information

Mutual information (MI) is a measure of the statistical dependence between random variables
and is used to find dependencies in data. Medical image registration is one of the well-known
applications of MI [12]. In our method, we employ SMI [I7] rather than the original MI to
measure the dependence between the sensor data and map. MI and SMI are defined as

( z(’) dazdy, 2)

= [ 25

()
SMI(X,Y) / / < IZ;“"Z’)@) 1)2dazdy. (3)
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The random variables X and Y are statistically independent if and only if

p(z,y) = p(z)p(y). (4)

Thus, the dependence can be measured by evaluating the “distance” between the left and right
hand sides of the Eq. (). MI can be regarded as the Kullback-Leibler divergence from p(x,y)
to p(x)p(y) and therefore it can measure the statistical dependence. Estimating MI is, however,
computationally rather expensive. Further, this approach is sensitive to outliers [19] [20] because
of the presence of the logarithm term.

On the other hand, SMI can be regarded as the Pearson divergence from p(x,y) to p(x)p(y).
Because both the Kullback-Leibler divergence and the Pearson divergence belong to the class of
f-divergences [21] [22], they share similar properties. Both MI and SMI are always non-negative,
and X and Y are statistically independent if and only if MI(X,Y) or SMI(X,Y) is equal to
zero. In the proposed method, we employ SMI as the measure of the dependence because SMI
has superior robustness against outliers (there is no logarithm term) and a computationally
efficient SMI estimator is known [1§].

3.2 Estimating Squared-loss Mutual Information Using Least-squares Mutual
Information

We employ least-squares mutual information (LSMI) [I8] to estimate SMI. We briefly review
LSMI here. A naive means of estimating SMI is to estimate all components in Eq. 3) (p(z), p(y),
and p(x,y)) individually and substitute them to the original equation. However, this approach
tends to result in large estimation errors, because the estimation errors in each component are
combined and magnified. Instead, LSMI estimates the density ratio r(x,y) directly (without
estimating each component), where

p(z,y) (5)

@) = ey

This improves both the accuracy and robustness. Here, r(x, y) is modeled using a multiplicative
kernel model, where

b b
re(@,y) =Y > Ok (x, &)Ly i) (6)
I=110=1

The parameter to estimate ® is a matrix of b x b (b < n) and each element in it is denoted by

©;.. The kernel centers {(:Ei,gjz(w)) b | are randomly chosen from the input data. We use the

Gaussian kernel for K and the delta kernel for L as shown below.

K(2,#) = exp (_'””—"””2> , 7)

202

_ L if y=y,
L(y,5) = 8
v, 9) {0, otherwise. ®)

The parameter © is learned so as to minimize the squared error J(®) in Eq. (77).

min J(©), (9)

®
J1(©) = / / (re(@,y) — r(@,))2p(@)p(y)dady. (10)
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By setting the derivative of J(®) to zero and approximating the expectations using empirical
averages, and by adding an /o regularization term to avoid overfitting, we obtain the following
discrete Sylvester equation.

1 . 1
—K"KOL'L+)0 =-K"L. (11)
n n

By solving this equation, we obtain the minimizer of Eq. (??). The dimensions of matrices K
and L are n x b, and their elements are given by K;; = K(x;,2;) and L;; = L(y, gl(“’)). The
Gaussian kernel width ¢ and regularization parameter A are hyper parameters, which can be
determined through cross-validation with respect to Eq. (??). Finally, the estimated SMI is
expressed as

1 1

We use the K-fold cross-validation (K = 5 in our experiments) to determine o and A. The
input data is split into K disjoint sets. Each set is used as test data in turn, and the remainder
of the data is used to estimate @. J(®) (Eq. (??)) is evaluated for each estimation. Hyper
parameters that minimize the average error are chosen from several candidates.

4. Position Tracking Using a Particle Filter

Above, we have discussed robot localization from one-shot observation. Now, we move to time-
series localization of a moving robot. This problem is also known as position tracking and
has been intensively studied for decades [23] [24]. At present, methods fusing a robot’s motion
estimation and observations using a particle filter are widely used [2] [4] [10] . In this section,
we describe the integration of dependence maximization localization with a particle filter.

4.1 SMiI-based Particle Filter Localization

In each particle-filter prediction step, the robot predicts its pose using the motion wu;, which
denotes the difference in the estimated pose between the previous time step ¢t — 1 and the
current step t; this information can be obtained through odometry, for example. The robot pose
for the j-th particle is denoted by w; and the particles are drawn from a proposal distribution

wj ~ p(w'fw; ™" uy). (13)

During the particle-filter update steps, the robot extracts features {a;}!' ; from the collected
sensor data. The particles are then resampled according to the weight (W) proportional to the
observation likelihood as

Wj o p(X = {zi}ilq|[wj, M). (14)

Here, the map is denoted by M. We estimate the SMI for each particle and interpret the result
as the observation likelihood

p(X |w;, M) = SMI(X, Y (). (15)
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4.2 Computationally Efficient Implementation

In the update steps, the number of particles greatly affects the processing time. Although the
LSMI core calculation is computationally efficient, the cross-validation process consumes a con-
siderable amount of time. This can be a hindrance to the implementation of a real-time system.
In our implementation, we reduce the number of cross-validation procedures under the assump-
tion that the changes in the hyper parameters between successive update steps are small. More
specifically, we augment the state vector s by appending o and A such that

sj = (wj, 05, Aj). (16)

In the very first update step, we perform cross-validation for all particles and store the chosen
parameters in s. In the subsequent update, we define an omission rate and randomly choose
particles for which the cross-validation step is omitted. For example, if the omission rate is set
to 70%, we perform cross-validation for only 30% of the particles and reuse the previously chosen
hyper parameters for the remaining particles. In this manner, we can reduce the processing time
by increasing the omission rate.

5. Experiments

In this section we demonstrate the performance of our method through two types of experiments:
localization from a single image and position tracking. We employ four datasets comprised of
sensor data collected in an urban area of Narashino, Chiba, Japan (Table [I).

5.1 FEmbedding Segment IDs on Street Map

In the following experiments, we employed a street map generated by extracting segments in
Google Maps™ 1N Google Maps™ screen capture was saved as an image and closed regions
were extracted manually. Then, boundary lines were extracted using the Sobel filter. Finally,
unique IDs were assigned to the segments using the flood-fill algorithm [26]. Figure [ illustrates
the procedurem.

5.2 Single Image 2-degrees-of-freedom Localization

First, we evaluated the efficacy of SMI as a localization measure.
5.2.1 Setup

In the following experiments, 2-degree-of-freedom (DoF') robot poses (lateral position and ori-
entation with respect to road) were estimated from single images. Note that 3-DoF localization
was not performed, because 2D street maps are often non-discriminative in terms of the longi-
tudinal direction and, also, the longitudinal position can be easily estimated from the robot’s
motion estimation (e.g., using odometry).

Colors and gradients were extracted from the images and used as features (summarized in
Table [2)). The set of features for the i-th pixel is denoted by ;. The correspondence between
segment IDs and pixels was obtained by projecting the street map onto the image plane (Fig-

ure ). The relative pose between the robot base and the camera was assumed to be known. The
(w)

i

segment ID projected on the i-th pixel for w is denoted by y

L Although other maps such as OpenStreetMap [25] can also be used, geometrically accurate maps are preferred. We employed
Google Maps™ in this paper because, for our target area, it provided significantly more accurate sidewalk information
than OpenStreetMap.

2 This process is unnecessary if we have vector data for the map.
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After the input data pairs {(mi,ygw))}?zl were obtained, a grid search was used to find the
position that maximizes Eq. ([II). The search ranges were —2 m to +2 m with 0.2 m intervals for
the lateral offset and —20° to +20° with 2° intervals for orientation.

5.2.2  Comparative Method Based on Road Boundary Matching

Although no existing localization method using the same setup is known, we implemented a
comparative method based on road boundary matching. Road boundaries were detected using
the road detection method proposed by Kong et al. m [27], which uses vanishing point detection
and does not require any prior information on the road color or texture. The detected road
boundaries were matched with lines on the map. The robot poses at which the boundary lines
match best were found using the same grid search mentioned above.

5.2.3 Results

We conducted single image localization experiments using two datasets: A) 37 images (32 from
sidewalks and 5 from roadways) with manually given ground truth positions and, B) 575 images
with GPS reference positions. We evaluated the accuracy, robustness, and processing time of our
method. We also performed comparison of different dependence measures.

5.2.8.1 Localization Accuracy. The localization results obtained for the two datasets are sum-
marized in Figure Bl Our method outperformed the road matching method in terms of local-
ization accuracy. Further, the average position and orientation errors were 0.45 m and 4.3° for
dataset A and 0.64 m and 6.5° for dataset B. The map resolution was approximately 23.5 cm per
pixel and, thus, a position error of 0.64 m corresponded to 2.7 pixels in the map image. We are
of the view that the localization accuracy is reasonable, because the localization error includes
errors of the map itself and the street map used here was not pixel-wise accurate.

Exemplary results for dataset A are shown in Figure 6] with LSMI plots against the position
and orientation errors (the rightmost column). Successful examples for both methods are shown
in Figure [l (a) and (b). The LSMI plot for (a) exhibits a clear peak around the ground-truth
position. Although the road detection method failed on Figure [6] (c-e), which was because of
the confusing salient edges in the images, our method exhibited successful localization. Braille
blocks caused several localization failures. Two peaks can be seen in the plot of Figure [Al (f);
the highest peak appeared at the ground-truth and the second highest peak corresponded to the
Braille blocks. Further, some of the localization errors were caused by map errors. An example
of a road width error can be seen in Figure [f] (g). Both the road detection method and our
method failed in the case shown in Figure [ (h), where the road boundaries were unclear and
the feature differences between the roadway, the sidewalk and the parking lot were very small.
A challenging example of map errors is shown in Figure [@ (i). The left road boundary on the
map appears curved, but this is inaccurate. Another challenge is coping with occlusions such as
the example shown in Figure[d (j); our method failed in this case because the blue tarp covering
the road was of a similar color to the vehicle that appears on the right hand side of the image.

5.2.8.2  Comparison of Dependence Measures. We evaluated our proposed method using dif-
ferent dependence measures: ordinary MI, SMI, quadratic mutual information (QMI) [28], and
squared-loss conditional entropy (SCE) [29]. The results are summarized in Table Bl and exem-
plary score distributions are shown in Figure [l SMI performed best in terms of both accuracy
and processing time. All dependence measures except MI are considered to be robust measures
(MT’s sensitivity can be seen from the spikes in the MI plot). QMI, which measures the depen-
dence based on the ¢y distance between p(x,y) and p(x)p(y), exhibited the second best perfor-
mance. SCE can also measure dependence robustly, and its score plot appears smooth; however,

'We used the code downloaded from [http://web.mit.edu/huikong/www/code.html|.
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SCE(Y| X)) had high values where all observations indicated a single segment ID. Therefore the
SCE performance was poor.

5.2.8.8 Comparison of Image Size. In the experiments using dataset A, images of 320x240
pixels were used to extract features. They were then downsampled to 80 x 60 pixels. We compared
the performance of our system for different downsampling ratios and the results are summarized
in Figure 7?. It is apparent that the localization accuracy was not largely affected even when
downsampled by a factor of 5 (both in the height and width directions, resulting in 64 x 48
pixels).

5.3 Position Tracking

We integrated our method with a particle filter and conducted position tracking experiments.
5.8.1 Setup

Position tracking experiments were executed using datasets collected by manually navigating a
wheel-chair robot (Figure [). The datasets include LIDAR (Velodyne HDL-32¢) measurements,
images from an omnidirectional camera (Pointgrey Ladybug3), gyro-assisted odometry, and real
time kinematic (RTK) GPS data for reference. Localization experiments were conducted off-line
using the collected data.

Gyro-assisted odometry was used for the particle-filter prediction. The update step was ex-
ecuted every 2 s (0.5-Hz frequency) using the local-grid-map measurement model depicted in
Figure[@ In each update step, a local grid map was generated using the point cloud and camera
images accumulated since the previous update step. The six-dimensional features listed in Ta-
ble M were extracted for each cell in the grid map. They are denoted by {x;}! ; (n denotes the
number of cells in the local grid map). After extracting the features, the particles were weighted

using SMI and resampled. The input data pairs {(x;, ylgw))}?zl were obtained by matching the
local grid map with the street map using the robot pose hypothesis w.

The details of the feature extraction procedure are as follows. Each point in the cloud was
assigned a color (RGB) and gradient magnitude (the response of the Sobel filter) feature by
projecting the point onto the image plane. As geometric features, we employed the elevation
of the point and laser scan discontinuity as described in [3I]. The laser scan discontinuity was
calculated for each point p; in the point cloud, using

max(R,,_, — Ry, Ry, — Rp,,0)%?, (17)

i41
where the R,, denotes the LIDAR range measurement for the point p;, and p;—1 and p;4; are
the neighboring points. After the abovementioned point-wise feature extraction, the points were
projected onto the ground plane and stored in the grid cells. The cell-wise features @ were
obtained by averaging the point-wise features and scaling them to the range between 0 to 1.

Some other details of the evaluation setup are as follows. The size of the local grid maps
were 10 mx10 m and the cell size was 10 cm. To reduce the processing time, the grid map was
downsampled by a factor of 4 before SMI estimation. The number of particles was 100, and the
number of kernel centers used to estimate the SMI was 40. Unless otherwise noted, the initial
particle distribution was given by a normal distribution with a standard deviation of 1 m and
5°, and the cross-validation omission rate was set to 90%. Our implementation was written in
MATLAB and a laptop computer with a Core i7-5500U CPU was used to measure the processing
time.

5.3.2  Comparative Method

Because no existing method can be directly compared to the method presented in this paper,
we implemented a comparative method based on road boundary detection and matching. We
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Figure 1. (a) Sample map used in proposed method. (b) Map interpretation. Different colors indicate different segment
IDs. (c) Illustrative model of the world. The map and sensor data have latent dependence.

o2 ® 2
2@% @0

(a) correct localization (b) incorrect localization
(high dependence) (low dependence)
Figure 2. Illustration of our localization approach. In this example, the robot obtains five color features (@1, ..., @5) from
different positions. Corresponding map segment IDs (y1,...,y5) are determined using the current robot pose hypothesis.

(a) The dependence between features & and segment IDs y is high when the robot is correctly localized because y can be
uniquely determined from @. (b) The dependence decreases when the robot is incorrectly localized.

Table 1. List of datasets used in experiments

Dataset  Description

37 monocular camera images (320x240) with manually labeled positions

575 monocular camera images (320x200) with GPS reference positions

3D LiDAR scans and omnidirectional camera images, and 150m odometry with GPS reference trajectory
3D LiDAR scans and omnidirectional camera images, and 4.5km odometry with GPS reference trajectory

P
(b) (©

(a) (d)

Figure 3. Illustration of map generation procedure. (a) Original map image captured from Google Maps™. (b) Closed
regions extracted manually. (c) Boundary lines detected using edge-detection algorithm. (d) Unique IDs assigned using
flood-fill algorithm [26]. Different colors indicate different IDs.

w/[@!fles/

(a) (b) (c) (d)

Figure 4. Single image observation model. (a) Input image. (b) Extracted gradient feature. (c) Map and robot pose (red
triangle). (d) Segment IDs projected onto image plane.

10
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Table 2. Features used in single image localization experi-

ments.
Category Feature Dimension
Color R,G,B 3
Gradient  Sobel magnitude, orientation 2
20— 20— 20 1
mean = 0.45m mean = 4.3° mean = 0.87 m
15 15 15 i

10

0 0.5 1 1.5 0 5 10 15 20 O
position error [m] orientation error [°]

0.5 1
position error [m]

200

200

1.5 2

200,

meajn =0.64m

150

meah =6.5°
| 150

mean = 1.11m

150

100 100 100

50 50 50

0.5 1
position error [m]

0 0.5 1 15 2 0 5 10 15 20 0
position error [m] orientation error [°]

(a) Proposed method

Figure 5. Histograms of position and orientation errors from single image localization. Top: Dataset A results (37 images).

Bottom: Dataset B results (575 images).

Table 3. Comparisons of the four different dependence measures (dataset A).

15 2

20

mejan =5.7°

15

10

0 5 10 15 20
orientation error [°]

200,

mean = 8.7°

150
100
50

0 5 10 15 20
orientation error [°]

(b) Road boundary matching

Measure  Mean position error [m] Mean orientation error [°]  Run time (per pose hypothesis) [s] Estimator
SMI 0.45 +£0.42 4.3 +£4.5 0.26 +0.007 LSMI [18]
MI 1.04 £0.67 11.9 £7.0 6.7 £0.56 MLMI [30]
QMI 0.77 £0.70 7.0 £7.0 0.30 £0.03 LSQMI [23]
SCE 1.64 £0.56 17.2 £3.0 1.4 £0.28 LSCE [29]

Table 4. Features used in position tracking experiments.

Category Feature Dimension
Tmage color color (R, G, B) 3
Image gradient Sobel magnitude 1
Height elevation of the points 1
Height change  laser scan discontinuity 1

11
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Input Map Ground truth Proposed  Road detection [27] LSMI plot
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Figure 6. Exemplary results of localization experiments. The localization results are shown by superimposing the road
boundaries onto the images. In the maps the estimated pose and ground-truth positions are indicated in red and blue,
respectively. The horizontal and vertical axes in the LSMI plots represent the orientation error [°] and the position error
[m], respectively. In the comparative method, the detected road boundaries were matched with the map for localization.
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Figure 7. Comparison of score distributions for different dependence measures. The horizontal and vertical axes in the
plots represent the orientation error [°] and the position error [m], respectively.
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Figure 8. Performance comparison for different image downsampling ratios. The mean position and orientation errors and
the processing time per position hypothesis are shown.

Figure 9. Robot used to collect datasets for position tracking experiments. It is equipped with a 3D LiDAR, an omnidi-
rectional camera, a monocular camera, a gyro and a GPS receiver.

(d) ()

Figure 10. Sample of local grid map generation and measurement model. (a) 3D point cloud obtained by a LiDAR and
cameras. A grid map is generated from the point cloud and features stored in the grid map are shown in (b-d). (b) Color
feature (red channel). (c) Height feature. (d) Laser discontinuity feature. (e) Illustrative example of data association between
a grid map and the map.
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incorporated the idea of road edge detection using height changes and image edges [32]. The
comparative method employed the same particle filter used in the proposed method, except for
the likelihood calculation. The likelihood for each particle was approximated by the correlation
between the road boundaries in the street map and the road boundary likeliness of the local grid
cells as shown below:

Z?:l flocal (mi)fmap (yl(w))

p({wl};;l’waM) = (w) ) (18)
\/Z?:l flocal(wi)z\/Z:‘L:l fmap(yz‘ )2
flocal(w) = x(g) : x(d)’ (19)
1, if y is road boundary,
ma = 20
Junap(y) {0, otherwise. (20)

Here, 2(®) and 29 denote the image gradient feature and laser discontinuity feature, respectively.

5.3.3 Results

Here, we show results obtained using two datasets C and D, which were collected in Narashino,
Chiba, Japan. The duration and distance of the navigation was 127 s and 150 m for dataset C,
and 3,514 s and 4.5 km for dataset D, respectively.

5.8.3.1 Localization Accuracy. We conducted position tracking experiments 100 times for each
dataset using different random seeds. Both exemplary results and camera images are shown in
Figures [[0] and I1l In both figures, it can be seen that our method successfully corrected the
odometry errors and tracked the robot position, while the comparative method resulted in large
errors for dataset D.

The localization accuracy was evaluated based on the root mean squared (RMS) error using
GPS as the ground-truth. Table Bl summarizes the results. The mean RMS error of the proposed
method over 100 runs was 0.6 m (approximately 2.6 pixels on the map) for dataset C and
1.33 m for dataset D. The errors were significantly smaller (p < 0.01 according to the paired
t-test) than those of the comparative method. Note that the estimation errors include both GPS
and map errors. Figure [[2 shows an example of map errors observed at (D) in Figure [[1l The
difference between the road position in the satellite image and on the map was approximately
2 m. Nevertheless, our method “correctly” tracked the robot position along the road indicated
on the map.

5.8.8.2 Comparison of Cross-Validation Omission. We compared the computational time of
the particle-filter update and the localization accuracy for different omission rates. For each
omission rate, we conducted position tracking 100 times using dataset C. Figure (a) sum-
marizes the results. By omitting 90% of the cross-validation procedures, the average processing
time decreased from 3.2 s to 0.6 s, without significant degradation of the localization accuracy.

5.8.3.83 Robustness Against Odometry Errors. The robustness against odometry errors was
evaluated using distorted odometry logs. We generated distorted odometry logs by adding Gaus-
sian noise with different noise levels. For each noise level, 100 distorted odometry logs using
different random seeds were generated. We compared the ratio of successful localizations (where
the final position error was within 2 m). The results are summarized in Figure [[3] (b). As can
be seen from that figure, our method showed superior robustness compared to the comparative
method. Further, our system maintained good localization accuracy even with relatively large
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odometry errors. Accuracy degradation began when the standard deviation of the noise exceeded
20% and 2°/s for the distance and orientation, respectively.

5.83.3.4 Robustness Against Initial Position Errors. The robustness against initial position er-
rors was evaluated using inaccurate initial positions. We randomly shifted the mean of the initial
particle distribution by 1-6 m and conducted position tracking experiments. The standard devia-
tions of the initial particle distribution were matched with the position error sizes. We evaluated
the ratio of successful localizations using 100 differently shifted initial positions for each error
size. The results are summarized in Figure (c). The proposed method maintained a 100%
success rate for initial position errors of up to 1 m. Although the localization accuracy degraded
as the error level increased, the proposed method was superior to the comparative method in
terms of the degradation speed.

6. Conclusions

This paper described a robot localization method based on a 2D street map. The key issue
addressed in this paper was determining the correct correspondence between the 2D street map
and sensor measurements. The proposed method finds the correspondence to localize a robot
through maximization of the statistical dependence between segments of the map and features
extracted from the sensor data. This dependence is measured using the squared-loss version of
a mutual information estimator, which is robust and computationally efficient.

The performance of our system was evaluated through extensive experiments using images and
laser data collected in real-world urban environments. The proposed method exhibited reasonable
localization accuracy. We also observed that SMI exhibited the best performance among several
examined dependence measures in terms of both localization accuracy and processing time.
Note that the robustness against occlusions and map error management of this method should
be improved through further research.

As dependence maximization localization functions without road boundary detection, this
approach should be particularly useful for environments that are not as structured as urban
roadways. The successful localization results obtained without using any prior knowledge of the
environment allow us to hope that our method can be easily applied to new environments. Finally,
because our method is general and not restricted to the road network, it should be applicable
to localization of other types of robots, such as flying robots and indoor mobile robots.
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