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Abstract— We propose a novel localization method for out-
door mobile robots using High Dynamic Range (HDR) vision
technology. To obtain an HDR image, multiple images at dif-
ferent exposures is typically captured and combined. However,
since mobile robots can be moving during a capture sequence,
images cannot be fused easily. Instead, we generate a set of
keypoints that incorporates those detected in each image. The
position of the robot is estimated using the keypoint sets to
match measured positions with a map. We conducted exper-
imental comparisons of HDR and auto-exposure images, and
our HDR method showed higher robustness and localization
accuracy.

I. I NTRODUCTION

Outdoor navigation is an important aspect of mobile
robotics, and localization is one of its crucial components.
Although localization has been studied extensively and a
number of methods have been proposed, robust and accurate
localization in varying outdoor environments is still difficult.

We are pursuing vision-based methods for mobile robot
localization. Recently, image features with distinctive lo-
cal descriptors, such as Scale-invariant feature transform
(SIFT), have been employed for localization [1] [2], which
is effective for indoor environments. However, in outdoor
environments, illumination conditions can change drastically,
making it difficult to detect stable features.

Fig. 1 shows an example of SIFT keypoint detection in an
outdoor environment. SIFT keypoints were detected in two
images of the same place captured at different times. The
two images appear very different because of the difference
in the sun angle and the camera’s limited dynamic range.
We matched keypoints between the two images using Lowe’s
SIFT Keypoint Matcher [3]; only four keypoints of the 530
detected were correctly matched.

To cope with this illumination problem, High Dynamic
Range (HDR) imagery has been employed [4]. One way to
obtain an HDR image is exposure bracketing, which fuses
multiple images captured at different exposures. We gener-
ated HDR images, detected SIFT keypoints, and matched
them in the same way as for the auto-exposure images (Fig.
1, bottom) and found that the number of correct keypoint
matches increased to 19. Thus, HDR imagery can improve
the robustness of SIFT keypoint detection.

When HDR imagery is applied to mobile robots using
exposure bracketing, images captured at different exposures
may not be of the same scene, because the robot may be
moving. This makes it difficult to fuse images to render an
HDR image. To address this problem, we generate a set of
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Fig. 1. Top: Two auto-exposure images of the same place captured
at 9:00 am and 4:00 pm and their SIFT keypoint detection results. Red
points indicate detected keypoints. Bottom: HDR images of the same place,
rendered from four images captured at different exposures, and their SIFT
keypoint detection results. Lowe’s SIFT Keypoint Detector [3] was used to
detect the SIFT keypoints. PhotomatixPro3.0 was used to render the HDR
images.

keypoints merging those from multiple images at different
exposures, instead of fusing images. We refer to this merged
keypoint set as theHDR Keypoint Setin this paper.

We developed a new localization method using the HDR
Keypoint Set. First, the robot is manually operated to collect
images and generate a map of HDR Keypoint Sets. A particle
filter is then employed to localize the robot during navigation.
The particles are drawn according to odometry estimation
and weighted by matching HDR Keypoint Sets between the
map and a measurement based on an epipolar constraint.

The main contributions of this paper are twofold. The
most significant one is a keypoint maintenance framework for
HDR imagery that accommodates images captured at various
times and camera poses. The other contribution is a particle
filter based localization system that handles differences in
time and camera pose between images.

We verified our method by localization experiments under
different illumination conditions.

II. RELATED WORK

A number of cameras that can acquire HDR images have
been proposed. Some use HDR imaging devices [5] [6], and
some are camera systems that capture multiple images and
fuse them internally [4] [7]. These HDR cameras are usually
expensive and are not widely available yet.

One method for producing an HDR image using conven-
tional cameras (low dynamic range cameras) is to capture
multiple images at different exposures and fuse them off-
line. It is widely used and many graphics editing software
applications have this feature. Although it is a useful ap-
proach, it is not easily applicable to mobile robots, since it



requires the camera and the scene to be motionless during
multiple captures.

Hrabar addressed this issue by fusing not images but
occupancy information obtained from stereo vision [8]. How-
ever, this method assumes that all camera poses are known,
and their paper does not discuss how to deal with problem
of localization. In contrast, our method uses only relative
camera poses between images, not absolute camera poses.
Thus our method requires only locally reliable robot motion
estimation (such as odometry), not the global position of the
robot.

Outdoor localization methods using non-HDR vision have
also been studied intensively, and methods such as the
teaching-playback approach [9], occupancy map-matching
using a stereo camera [10], and matching 3D points recon-
structed by motion stereo [11] have been proposed.

Compared to these approaches, our method has an ad-
vantage in that the robot can navigate on paths that differ
from the map. The computational cost of our method is
relatively small because we use a monocular camera and do
not use 3D reconstruction. Moreover, our method can use
distant views or objects far from the camera, which can not
be reconstructed by stereo vision approaches because of the
small disparities in apparent position.

III. HDR K EYPOINT SET

In this section, we define the HDR Keypoint Set that we
use instead of HDR images. The HDR Keypoint Set consists
of a set of keypoints detected in a series of images and the
relative camera poses between the images.

In the experiments described in this paper, we employed
SIFT as a keypoint detector. However, the HDR Keypoint
Set can also handle other image local features such as Speed
Up Robust Features (SURF).

A. Definition of HDR Keypoint Set

Although it seems obvious that using multiple images
captured at different exposures can improve the robustness
to illumination conditions, adopting the approach for mobile
robots requires that we relax the constraint that the camera
must be still.

Our approach is to create a set of keypoints detected
in source images. We use odometry to obtain the relative
camera poses (relative position and rotation) between source
images, assuming odometry is locally reliable. Keypoints
are detected in each image and merged into a single set.
Keypoints that appear in multiple images are extracted,
grouped and handled as a single keypoint. This is done
by matching keypoints between images and removing false
matches by using the relative camera pose between images.
We refer to this set of keypoints associated with relative
camera poses as theHDR Keypoint Set.

Compared to a simple union of keypoint sets from multiple
images, an HDR Keypoint Set has two advantages. First, the
number of keypoints in a set is reduced, so the computational
cost of matching keypoint sets can also be reduced. This is
particularly effective when performing exhaustive matches

of keypoint descriptors between keypoint sets. Second, key-
points that appear in multiple images at different exposures
can be considered as robust to illumination conditions. The
number of images that contain a keypoint can be used as
a barometer of robustness or significance. Our localization
method described below, uses it as a weight in keypoint
matching.

B. Generation of HDR Keypoint Set

Assuming thatn images are captured at different shutter
speeds for an HDR Keypoint Set, we denote images by
I1, I2, ...In and the sets of keypoints detected in them as
K1,K2, ...,Kn in ascending order of shutter speed. Here we
denote the union of keypoint sets detected in all images by

H ′ = K1 ∪K2 ∪ ... ∪Kn. (1)

Keypoints inK1,K2, ...,Kn are matched between images
to find keypoints that appear in multiple images. Those
keypoints inH ′ are removed (excluding one of them) as
“duplicated” and we obtain an HDR Keypoint Set:

H = H ′ −D (2)

where D is a set of duplicated keypoints inH ′. Finally,
for each keypointk in the HDR Keypoint Set, the number
of images that contain the keypoint is registered as the
importance of the keypoint.

C. Detecting Duplicated Keypoints

To find duplicated keypoints efficiently, only neighboring
images are compared together. This is because if a keypoint
in Kj is not found inKj+1 because of over exposure, it is
not likely to appear inKj+2. For each keypoint inKj(j =
0, ...n− 1) is compared with all keypoints inKj+1 and find
the closest keypoint by the Euclidean distance of their feature
vectors. The matched keypoints are treated as a pair and
stored in a set of matched pairs:Mj .

The set of matched pairs usually contains many false
matches. Lowe removed false matches using the second-
closest neighbor [12]; however, the method can also remove
many correct matches. Our approach is to remove false
matches using an epipolar constraint between images.

Essential matrixE is calculated using the relative rotation
matrix R and normalized translation vectort = [x, y, z]T

between two camera poses which is typically obtained from
odometry.

t× =

 0 −z y
z 0 −x
−y x 0

 (3)

E = t×R (4)

We denote the 3D ray vector for a keypointk by pk. Each
matched keypoint pair(k1, k2) in Mj is evaluated as to
whether it satisfies eq. (5); if not, it is removed fromMj .

|pT
k2
Epk1 | < rth (rth : threshold) (5)

The procedure is applied to allMj(j = 0, ...n − 1) to find
all keypoints that appear in multiple source images.



Fig. 2. Finding keypoints that appear in multiple images. Left: Keypoints
detected by SIFT. Center: Matched pairs of keypoints. Right: False matches
are removed by an epipolar constraint.

It should be noted that when two camera poses are the
same (i.e. the camera is not moving), the epipolar constraint
can not be calculated. In such a case, false matches can be
easily found by comparing the position of the keypoints on
the image coordinates.

Fig. 2 illustrates the process of finding keypoints that
appear in multiple images.

IV. L OCALIZATION USING HDR KEYPOINT SET

Our localization method uses a single camera, and is based
on Monte Carlo Localization [13]. The robot is assumed to
navigate on a flat surface, and the 2D pose of the robot,
x = (x, y, θ), is estimated. A map consisting of a database
of HDR Keypoint Sets is built in advance, and the pose of
the robot is estimated on the map. To build a map, the robot
is manually navigated along the path collecting images and
odometry log. HDR Keypoint Sets are then generated and
placed according to the odometry log.

A. Localization

In the prediction step, for each particle a new generation
of particless(i)t is drawn according to the probability of the
robot’s pose given the previous states(i)t−1 and the relative
movement of the robot∆xt.

s
(i)
t ∼ p(xt|s(i)t−1,∆xt) (6)

In our implementation, we use odometry to obtain the relative
motion of the robot and assume errors in the odometry follow
a normal distribution.

Subsequently, a series of images are captured at different
exposures, and a measurement HDR Keypoint SetHt is
generated. The particles are updated by weighting each
particle using the likelihood ofHt given mapM and the
particless(i)t as shown in eq. (7).

p(Ht|s(i)t ,M) (7)

Since the true distribution of eq. (7) is difficult to deter-
mine, we would like to obtain a distribution similar to it. Our
method approximates it using the number of correct keypoint
matches between the measurement and the map.

For each particlei, the HDR Keypoint Set entryHi
map that

is closest to the pose of the particle is chosen from the map
(see section IV-B for details). Keypoints inHt and Hi

map

are matched to create a set of matched pairs:

M i
t,map = {(k1, k2)|k1 ∈ Ht, k2 ∈ Hi

map} (8)

The particles are scored by counting the number of
matched pairs that satisfy the epipolar constraint. The epipo-
lar constraint is evaluated for each matched pair(k1, k2) ∈
M i

t,map using ray vectors of the keypointspk1 ,pk2 and
the essential matrixEk1,k2 . The essential matrix for the
relative camera pose between the measurement and the map
is calculated as eq. (4). The relative camera pose is calculated
using the robot pose ofHi

map on the map and the pose of
the particle at the time the image was captured.

We have found that incorporating the importance of the
keypoint (see section III-B) improves the accuracy of local-
ization. We denote the importance of keypointk by mk. The
score of a particle is calculated as the sum of the weighted
number of matched pairs that satisfy the epipolar constraint
(eq. (9)-(11)).

rk1,k2 = |pT
k2
Ek1,k2pk1 | (9)

fs(k1, k2) =

{
mk1 ·mk2 (if rk1,k2 < rth)
0 (otherwise)

(10)

W (i) =

∑
[k1,k2]∈Mi

t,map

fs(k1, k2)

∑
k2∈Hi

map

mk2

(11)

Finally, particles are resampled using a normalized weight:

w(i) = W (i)/
∑
j

W (j). (12)

B. Choosing Matching Candidates from Map

A caveat in evaluating a keypoint pair using the epipolar
constraint is that the translation between the camera poses
of the measurement and the map must not be zero. Because
if the translation is zero, eq. (9) is always zero even for any
false matches. We avoid this problem by choosing an HDR
Keypoint Set entry from the map that is closest to the pose
of the particle but not closer than a threshold.

Matching keypoints between HDR Keypoint Sets is the
most time-consuming task in weighting and resampling par-
ticles. In particular, when the distribution of the particles
is large (e.g., the robot’s pose is completely unknown),
the number of comparisons is also large because many
particles choose different map entries. We could reduce the
computational cost by updating particles on the basis of



Fig. 3. Robot used in experiments.

measurements using image searching (e.g., FAB-MAP [14]
and Vocabulary Tree [15]).

V. EXPERIMENTS

A. System Description

Our robot PapyrusII (Fig. 3) has a gyro-assisted odometry
system [16]. A camera HMB-2000 from VSharp Inc., con-
sisting of a Grasshopper (Point Grey Research Inc.) and a
fish-eye lens, is mounted at a height of 80cm. The camera
has a field of view of 185◦ in both vertical and horizontal
directions, and is capable of capturing images at 15fps,
cycling four user-defined exposure settings (gain and shutter
speed) [17].

Since the camera does not have any automatic shutter
speed and gain control for HDR images, we implemented
a simple shutter speed control system for HDR images; the
fastest shutter speedt1[ms] is chosen using the average pixel
intensity of the previous image and the rest three shutter
speeds are determined ast2 = 2t1, t3 = 4t1, t4 = 8t1.
Images were shrunk to512× 512 in the experiments.

B. All-day Keypoint Matching

The robustness of keypoint matching was evaluated. Both
HDR and auto-exposure images of the same scene were
captured from 10:00am to 3:00pm on a sunny day. Images
captured at 1:00pm were matched with images captured at
different time of day. The result shown in Fig. 4 indicates
that the number and the ratio of correct keypoint matches
are improved by the HDR Keypoint Set.

C. Position Tracking In a Small Loop

We conducted position tracking experiments on a loop of
400m in our campus that includes paved roads and tiled
pedestrian areas. To evaluate the effectiveness of introducing
the HDR method, we collected both HDR images and auto-
exposure images simultaneously and split them into two data
sets (HDR and auto-exposure) that share the same odometry
log. In collecting the data sets, the robot was manually
navigated along the path at a maximum speed of 60cm/s,
capturing five images (one auto-exposure image and four
images at different exposures) at every 3 seconds. The robot
was operated to pass through 16 reference points in the path
that we have defined to measure the localization accuracy.

10:00am 11:00am 1:00pm 3:00pm

Fig. 4. Keypoint matching experiments. Top: Images from keypoint
matching experiments. Bottom: Matching results.

We collected three data sets at 9:00 am, 3:30 pm, and 4:00
pm on three shiny days. Images collected by the robot are
shown in Fig. 5. In experiments below, the initial pose of
the robot is given as a normal distribution with a standard
deviation of 50cm and the number of particles employed was
300.

1) Accuracy: We measured the accuracy of our localiza-
tion method using the three data sets. Each data set in turn
is used as a map and an input to localization. Loops in the
odometry log were closed by the Lu-Milios method [18] in
constructing the maps. In addition to the comparison between
our HDR method and auto-exposure method, we investigated
how merging keypoints in constructing a HDR Keypoint
Set affects the localization accuracy. Table. I summarizes
the results. The proposed method showed higher accuracy
when the illumination conditions between the map and the
input differ largely (Table. I a, c); no significant difference is
found when the illumination conditions in the map and the
input are similar (b). Our method with the HDR Keypoint Set
outperformed the simple union of keypoint set. The result can
be interpreted that the HDR Keypoint Set detected keypoints
that are robust to illumination conditions.

The trajectory of the estimated pose obtained in experi-
ment (a) is shown in Fig. 6.

2) Performance: As described in section III, the HDR
Keypoint Set groups and merges keypoints that appear mul-
tiple images and handles them as a single keypoint. We
examined how the performance is influenced by merging
keypoints. We used the data sets same as Table. I (a)
and measured the computational time of particle updating
procedure (excluding SIFT keypoint detection, including
generation of a measurement HDR Keypoint Set) with two
methods: our method using the proposed HDR Keypoint Set,
and a method that uses a union of keypoint sets.

The comparison of the computational time along with the
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Fig. 5. Images captured by the robot at three points.

TABLE I

RESULT OF POSITION TRACKING EXPERIMENTS

Input Map Method Ave. Error Max. Error

a 9:00am 3:30pm
HDR1∗ 24cm, 1.3◦ 61cm, 4.3◦

HDR2† 31cm, 1.3◦ 64cm, 4.2◦

AE‡ 77cm, 2.0◦ 194cm, 5.6◦

b 3:30pm 4:00pm
HDR1 12cm, 1.6◦ 25cm, 3.0◦

HDR2 12cm, 1.6◦ 34cm, 3.0◦

AE 12cm, 1.8◦ 29cm, 3.2◦

c 4:00pm 9:00am
HDR1 50cm, 2.0◦ 185cm, 4.7◦

HDR2 203cm, 1.9◦ 415cm, 4.5◦

AE 512cm, 5.2◦ 993cm, 9.7◦

∗ HDR Keypoint Set (proposed method)
†

Union of HDR keypoints
‡

Auto-exposure

number of keypoints is shown in Fig. 7. The average updating
time was 812ms by our method and 1,285ms by the method
that uses a union of keypoint sets. Significant reductions of
the computational time have been seen particularly when the
number of keypoints was large. Keypoints were rather evenly
detected in images with different shutter speeds.

3) Robustness:Two tests to evaluate the robustness on
the proposed method were performed; one is using distorted
odometry logs and the other is using partially occluded
measurements. We generated distorted odometry logs based
on the data set of 9:00 am; on each step in the odometry
log, a Gaussian random error was added in both the position
and the orientation of the robot. We used Gaussian errors
with different standard deviations: 1, 3, 5, and 10% of the

Fig. 6. Position tracking result by our proposed method (red) and auto-
exposure method (orange). A, B, C indicates the points where images in
Fig. 5 were captured.
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Fig. 7. Comparison of computational time for updating particles. Bars
indicate the number of keypoints detected from each image. Image 1 is the
one captured with the fastest shutter speed. The computational time was
measured on a laptop with Core i7 3.33GHz.

distance traveled; 0.1, 0.3, 0.5, and 1.0deg/sec for the time
elapsed. Occluded measurements are simulated by masking
part of input images. We used masks with the size of 5, 10,
20, and 30% of the image.

Fig. 8 shows the accuracy of the position tracking exper-
iments. Our method kept good localization accuracy with
distorted odometry up to 5% error in distance and 0.5
deg/sec in orientation, and with 20% occluded input images.

D. Localization in a Larger Environment

Lastly, we tested our method in a larger environment. We
generated a campus map using two data sets collected at 9:00
am and 9:30 am on different days. The distance that the robot
traveled was 1.2km in total. The Lu-Milios method [18] was
again used to arrange two data sets.

We then collected another data set at 4:20 pm by manually
navigating the robot on a path that differs from the two
paths used for the map, and conducted a position tracking
experiment using the data set and the map. Our method
successfully kept track of the robot’s pose as shown in Fig.
9. We measured the accuracy at 21 reference points in the
path; the average error was 83cm, 2.2◦ and the maximum
error was 164cm, 10.2◦.



Fig. 8. The accuracy of localization using distorted odometry logs (left)
and using partially occluded images (right).

Fig. 9. Localization experiment in a larger environment. The estimated
robot’s trajectory by our method is shown in red. The map nodes generated
from 9:00 am data set and 9:30 am data set are shown in blue and cyan
dots, respectively.

VI. CONCLUSION

In this paper, we presented a localization method using a
High Dynamic Range vision to cope with outdoor illumina-
tion issues. Instead of fusing images captured at different
exposures, our method creates a set of keypoints incor-
porating keypoints detected in each image. The principal
benefit of introducing High Dynamic Range vision is the
increased number of keypoints. We have demonstrated that
our HDR Keypoint Set approach improves keypoint-based
localization in terms of the robustness, the accuracy and the
computational cost.

Remaining topics include how to determine the optimal
number of images and the exposures for a HDR Keypoint
Set. An image histogram should be a help, and the number of
keypoints and the distribution of keypoints in an image could
also be used. We are also working on global localization
using visual words approach.

While we consider the High Dynamic Range requisite
for outdoor vision, we do not expect it to solve all of
the illumination issues. For example, HDR might not be
a solution to a problem that keypoints caused by sharp
edges of shadows can affect keypoint matches. Some other
technologies such as shadow removal should be required.
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