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Abstract—We propose a novel localization method for out-
door mobile robots using High Dynamic Range (HDR) vision
technology. To obtain an HDR image, multiple images at dif-
ferent exposures is typically captured and combined. However,
since mobile robots can be moving during a capture sequence, 9:00am Auto exposure
images cannot be fused easily. Instead, we generate a set of
keypoints that incorporates those detected in each image. The
position of the robot is estimated using the keypoint sets to i;
match measured positions with a map. We conducted exper-
imental comparisons of HDR and auto-exposure images, and i'
our HDR method showed higher robustness and localization

accuracy. 9:00am HDR 4:00pm HDR

Fig. 1.  Top: Two auto-exposure images of the same place captured
[. INTRODUCTION at 9:00 am and 4:00 pm and their SIFT keypoint detection results. Red

f ot ; ; .1 points indicate detected keypoints. Bottom: HDR images of the same place,
Outdoor havigation Is an important aspect of mOb”E?endered from four images captured at different exposures, and their SIFT

robotics, and localization is one of its crucial componentseypoint detection resuits. Lowe’s SIFT Keypoint Detector [3] was used to
Although localization has been studied extensively and ¢etect the SIFT keypoints. PhotomatixPro3.0 was used to render the HDR
number of methods have been proposed, robust and accur8f&es-

localization in varying outdoor environments is still difficult.

We are pursuing vision-based methods for mobile robqfeyhaints merging those from multiple images at different

localization. Recently, image features with distinctive Io'exposures, instead of fusing images. We refer to this merged

cal descriptors, such as Scale-invariant feature transfor&gypoint set as theiDR Keypoint Sein this paper.
.(SIFT)’ have be_en employ_ed for localization [1] _[2]' which \ye developed a new localization method using the HDR
IS e_ffecuve for. |ndc_>or gnwronmgnts. However, in OUt,doorKeypoint Set. First, the robot is manually operated to collect
environments, illumination conditions can change drasucall)(m‘,:lges and generate a map of HDR Keypoint Sets. A particle
m?:klngllt r(]jn‘ﬁcult to deteclt st?télleFfreekltureg. q .. filteris then employed to localize the robot during navigation.
'g. 1 Shows an example o . eypoint etectloq N aRne particles are drawn according to odometry estimation
putdoor environment. SIFT keypoints were detectt_ad N Weng weighted by matching HDR Keypoint Sets between the
Images of the same place_ captured at different times. T ap and a measurement based on an epipolar constraint.
.tWO images appear very different begaqse of the @fference.rhe main contributions of this paper are twofold. The
|Vr\1/ the fuhn ;rllgle a_nf[:i tl:t]et cametrhast Ilm!ted dy“af!“'c Ii"’mgfnost significant one is a keypoint maintenance framework for
SI?:_Ir_nﬁc ed te'\y/lptilnhs %wee? fe WIS |ma_g(?[s U?Thg 50;\(’) R imagery that accommodates images captured at various
detect zypom atc ﬁr [ ]’toﬂ yd our keypoints ot the times and camera poses. The other contribution is a particle
etected were correctly matcned. . ._filter based localization system that handles differences in
To cope with this illumination problem, High Dynamic time and camera pose between images

Range (HDR) imagery has been employed.[4]. On.e way to We verified our method by localization experiments under
obtain an HDR image is exposure bracketing, which fusec‘?lfferent illumination conditions

multiple images captured at different exposures. We gener-

ated HDR images, detected SIFT keypoints, and matched I

them in the same way as for the auto-exposure images (Fig.

1, bottom) and found that the number of correct keypoint A number of cameras that can acquire HDR images have

matches increased to 19. Thus, HDR imagery can improveen proposed. Some use HDR imaging devices [5] [6], and

the robustness of SIFT keypoint detection. some are camera systems that capture multiple images and
When HDR imagery is applied to mobile robots usingfuse them internally [4] [7]. These HDR cameras are usually

exposure bracketing, images captured at different exposum@¢pensive and are not widely available yet.

may not be of the same scene, because the robot may béne method for producing an HDR image using conven-

moving. This makes it difficult to fuse images to render aiional cameras (low dynamic range cameras) is to capture

HDR image. To address this problem, we generate a set wiultiple images at different exposures and fuse them off-

) ) ) _line. It is widely used and many graphics editing software
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requires the camera and the scene to be motionless durioigkeypoint descriptors between keypoint sets. Second, key-
multiple captures. points that appear in multiple images at different exposures

Hrabar addressed this issue by fusing not images baan be considered as robust to illumination conditions. The
occupancy information obtained from stereo vision [8]. Howhumber of images that contain a keypoint can be used as
ever, this method assumes that all camera poses are knoanharometer of robustness or significance. Our localization
and their paper does not discuss how to deal with problemethod described below, uses it as a weight in keypoint
of localization. In contrast, our method uses only relativenatching.
camera poses between images, not absolute camera poses . .
Thus oufmethod requires ong:y locally reliable robot motliaong' Generation of HDR Keypoint Set
estimation (such as odometry), not the global position of the Assuming that, images are captured at different shutter
robot. speeds for an HDR Keypoint Set, we denote images by

Outdoor localization methods using non-HDR vision havd1, I2, .--In and the sets of keypoints detected in them as
also been studied intensively, and methods such as the, K2, ..., K, in ascending order of shutter speed. Here we
teaching_p|ayback approach [9]’ occupancy map_matchir@note the union of keypoint sets detected in all images by
using a stereo camera [10], and matching 3D points recon- H =K, UKyU..UK,. 1)
structed by motion stereo [11] have been proposed.

Compared to these approaches, our method has an adKeypoints inK7, K», ..., K, are matched between images
vantage in that the robot can navigate on paths that diffé® find keypoints that appear in multiple images. Those
from the map. The computational cost of our method i§eypoints in I’ are removed (excluding one of them) as
relatively small because we use a monocular camera and diuplicated” and we obtain an HDR Keypoint Set:
not use 3D reconstruction. Moreover, our method can use H—H —D )
distant views or objects far from the camera, which can not
be reconstructed by stereo vision approaches because of wieere D is a set of duplicated keypoints iH’. Finally,

small disparities in apparent position. for each keypoint: in the HDR Keypoint Set, the number
of images that contain the keypoint is registered as the
I1l. HDR KEYPOINT SET importance of the keypoint.

In this section, we define the HDR Keypoint Set that w
use instead of HDR images. The HDR Keypoint Set consis
of a set of keypoints detected in a series of images and theT0 find duplicated keypoints efficiently, only neighboring
relative camera poses between the images. images are compared together. This is because if a keypoint

In the experiments described in this paper, we employddl K is not found inK;, because of over exposure, it is
SIFT as a keypoint detector. However, the HDR Keypoinfot likely to appear ink;». For each keypoint inf;(j =
Set can also handle other image local features such as Spfed-n — 1) is compared with all keypoints if’; ., and find

” Detecting Duplicated Keypoints

Up Robust Features (SURF). the closest keypoint by the Euclidean distance of their feature
o _ vectors. The matched keypoints are treated as a pair and
A. Definition of HDR Keypoint Set stored in a set of matched pait&f;.

Although it seems obvious that using multiple images The set of matched pairs usually contains many false
captured at different exposures can improve the robustng®@tches. Lowe removed false matches using the second-
to illumination conditions, adopting the approach for mobilelosest neighbor [12]; however, the method can also remove
robots requires that we relax the constraint that the camef@ny correct matches. Our approach is to remove false
must be still. matches using an epipolar constraint between images.

Our approach is to create a set of keypoints detected Essential matriXt is calculated using the relative rotation
in source images. We use odometry to obtain the relativ@atrix R and normalized translation vector= [z, y, 2]”
camera poses (relative position and rotation) between souregtween two camera poses which is typically obtained from
images, assuming odometry is locally reliable. Keypoint@dometry.

are detected in each image and merged into a single set. 0 —z y
Keypoints that appear in multiple images are extracted, ty = . 0 —x 3)
grouped and handled as a single keypoint. This is done —y oz 0
by matching keypoints between images and removing false E = t,R (4)

matches by using the relative camera pose between images.

We refer to this set of keypoints associated with relativ¥Ve denote the 3D ray vector for a keypofntoy p,. Each
camera poses as titDR Keypoint Set matched keypoint paifk:, k) in M; is evaluated as to
Compared to a simple union of keypoint sets from multiplavhether it satisfies eq. (5); if not, it is removed frahf;.
images, an HDR Keypoint Set has two advantages. First, the
number of keypoints in a set is reduced, so the computational
cost of matching keypoint sets can also be reduced. This The procedure is applied to all/;(j = 0,..n — 1) to find

particularly effective when performing exhaustive matcheall keypoints that appear in multiple source images.

Pt EPi,| <7in  (re : threshold) (5)
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Since the true distribution of eq. (7) is difficult to deter-
mine, we would like to obtain a distribution similar to it. Our
[il'"! \ method approximates it using the number of correct keypoint
i\ 4@  matches between the measurement and the map.

For each particlé, the HDR Keypoint Set entrﬁfmp that
is closest to the pose of the particle is chosen from the map
(see section IV-B for details). Keypoints if; and H:

Ll L map
:‘Ui"l}“ “ “ EI‘W["H““!W: are matched to create a set of matched pairs:
l\l it 5 ) " i i
i (!wa“. ! Mi vy = {(kr ko)l € Hy ko € HEL Y (8)
The particles are scored by counting the number of
; :sl"l ‘, ‘!“I matched pairs that satisfy the epipolar constraint. The epipo-
i M“MI I | lar constraint is evaluated for each matched gair, ko) €
‘ ll "E" ¥ M{ .., using ray vectors of the keypointsy,,pr, and
P

the essential matriXE, ,. The essential matrix for the
relative camera pose between the measurement and the map
is calculated as eq. (4). The relative camera pose is calculated
Fig. 2. Finding keypoints that appear in multiple images. Left: Keypoints«; i

detected by SIFT. Center: Matched pairs of keypoints. Right: False matchﬁéﬁsmg th_e robot pose OHm“?.’ on the map and the pose of
are removed by an epipolar constraint. the particle at the time the image was captured.

We have found that incorporating the importance of the

It should be noted that when two camera poses are t}!fgy_point (see section I!I-B) improves the accuracy of local-
same (i.e. the camera is not moving), the epipolar constraitf@tion. We denote the importance of keypdiriy .. The
can not be calculated. In such a case, false matches can$58"® Of a particle is calculated as the sum of the weighted
easily found by comparing the position of the keypoints ofiumber of matched pairs that satisfy the epipolar constraint
the image coordinates. (eq. (9)-(11)).

Fig. 2 illustrates the process of finding keypoints that

appear in multiple images. Thyke = |p£2Ek1,k2pk1| (9)
IV. LOCALIZATION USING HDR KEYPOINT SET _ Myt - Mg,  (IF 7 g <Tep) 10
o . , Fslkr ko) - = 0 (otherwise (10)
Our localization method uses a single camera, and is based
on Monte Carlo Localization [13]. The robot is assumed to > fs(ky, ko)
navigate on a flat surface, and the 2D pose of the robot, 0 [k1,k2] €M 0
x = (z,y,0), is estimated. A map consisting of a database W = (11)
of HDR Keypoint Sets is built in advance, and the pose of i XH: Mk
2€HY

map

the robot is estimated on the map. To build a map, the robot
is manually navigated along the path collecting images and Finally, particles are resampled using a normalized weight:
odometry log. HDR Keypoint Sets are then generated and ; ; .
placed a)::co?ding to the odometry log. w® =w! )/Z wo. 12)
J
A. Localization B. Choosing Matching Candidates from Map
In the preéd_;ctlon step, for each particle a new generation o caveat in evaluating a keypoint pair using the epipolar
of particless;" is drawn according to the probability of the ¢onstraint is that the translation between the camera poses
robot’s pose given the previous statf, and the relative of the measurement and the map must not be zero. Because
movement of the robafAx;. if the translation is zero, eq9) is always zero even for any
Sgi) (6) false matches. We avoid this problem by choosing an HDR
Keypoint Set entry from the map that is closest to the pose
In our implementation, we use odometry to obtain the relativef the particle but not closer than a threshold.
motion of the robot and assume errors in the odometry follow Matching keypoints between HDR Keypoint Sets is the
a normal distribution. most time-consuming task in weighting and resampling par-
Subsequently, a series of images are captured at differaifles. In particular, when the distribution of the particles
exposures, and a measurement HDR Keypoint Betis is large (e.g., the robot's pose is completely unknown),
generated. The particles are updated by weighting eadiie number of comparisons is also large because many
particle using the likelihood off; given map) and the particles choose different map entries. We could reduce the
particIeSSﬁ” as shown in eq. (7). computational cost by updating particles on the basis of

~ P(Xt|5§?1a Axy)
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measurements using image searching (e.g., FAB-MAP [14]

d Vocabulary Tree [15]). w00 | ﬁ
and Vocabulary Tree [15]) O,I r r r [;0

V. EXPERIMENTS 10:00am 11:00am 0:00pm  2:00pm  3:00pm
Time of day
A. System Description

Our robot Papyrusll (Fig. 3) has a gyro-assisted odometfy
system [16]. A camera HMB-2000 from VSharp Inc., con-
sisting of a Grasshopper (Point Grey Research Inc.) and a
fish-eye lens, is mounted at a height ofc80 The camera  We collected three data sets at 9:00 am, 3:30 pm, and 4:00
has a field of view of 185in both vertical and horizontal pm on three shiny days. Images collected by the robot are
directions, and is capable of capturing images at 15fpshown in Fig. 5. In experiments below, the initial pose of
cycling four user-defined exposure settings (gain and shuttdre robot is given as a normal distribution with a standard
speed) [17]. deviation of 5@m and the number of particles employed was

Since the camera does not have any automatic shutt00.
speed and gain control for HDR images, we implemented 1) Accuracy: We measured the accuracy of our localiza-
a simple shutter speed control system for HDR images; th®n method using the three data sets. Each data set in turn
fastest shutter speeg[ms] is chosen using the average pixelis used as a map and an input to localization. Loops in the
intensity of the previous image and the rest three shuttedometry log were closed by the Lu-Milios method [18] in
speeds are determined &s = 2t1,t3 = 4t1,t4 = 8t;.  constructing the maps. In addition to the comparison between
Images were shrunk t612 x 512 in the experiments. our HDR method and auto-exposure method, we investigated

) ) how merging keypoints in constructing a HDR Keypoint
B. All-day Keypoint Matching Set affects the localization accuracy. Table. | summarizes

The robustness of keypoint matching was evaluated. Bothe results. The proposed method showed higher accuracy
HDR and auto-exposure images of the same scene weawben the illumination conditions between the map and the
captured from 10:00am to 3:00pm on a sunny day. Imagesput differ largely (Table. | a, ¢); no significant difference is
captured at 1:00pm were matched with images captured fatind when the illumination conditions in the map and the
different time of day. The result shown in Fig. 4 indicatesnput are similar (b). Our method with the HDR Keypoint Set
that the number and the ratio of correct keypoint matchesutperformed the simple union of keypoint set. The result can
are improved by the HDR Keypoint Set. be interpreted that the HDR Keypoint Set detected keypoints
that are robust to illumination conditions.

The trajectory of the estimated pose obtained in experi-

We conducted position tracking experiments on a loop ahent (a) is shown in Fig. 6.
400m in our campus that includes paved roads and tiled 2) Performance: As described in section 1, the HDR
pedestrian areas. To evaluate the effectiveness of introducikgypoint Set groups and merges keypoints that appear mul-
the HDR method, we collected both HDR images and autdiple images and handles them as a single keypoint. We
exposure images simultaneously and split them into two daéxamined how the performance is influenced by merging
sets (HDR and auto-exposure) that share the same odomekteypoints. We used the data sets same as Table. | (a)
log. In collecting the data sets, the robot was manuallgnd measured the computational time of particle updating
navigated along the path at a maximum speed @63, procedure (excluding SIFT keypoint detection, including
capturing five images (one auto-exposure image and fogeneration of a measurement HDR Keypoint Set) with two
images at different exposures) at every 3 seconds. The rolméethods: our method using the proposed HDR Keypoint Set,
was operated to pass through 16 reference points in the patihid a method that uses a union of keypoint sets.
that we have defined to measure the localization accuracy. The comparison of the computational time along with the

g. 4. Keypoint matching experiments. Top: Images from keypoint
atching experiments. Bottom: Matching results.

C. Position Tracking In a Small Loop



Dataset| AE HDR

«+ Map e & —
= QOdometry f/
~@- Result by HDR

Result by AE

9:00am

Reference Point

= :

f b
| B~
2

e

A | 3:30pm

4:00pm

e & e

L d A v -~

9:00am

Fig. 6. Position tracking result by our proposed method (red) and auto-
exposure method (orange). A, B, C indicates the points where images in
Fig. 5 were captured.

B | 3:30pm a
5000 r - 5000
il

‘keypoint‘s in imaée 4

keypoints in image 3

keypoints in image 2
- keypoints in image 1 _

4000 update time with HDR Keypoint Set ----- 4000

=
ww
;
C| 3:30pm | K

4:00pm

@ update time with union of keypoints --------- »
9:00am E 2000 S
s B
o —
5 2000 &
o E
3 2
o
=]
1000
4:00pm %
-0
0 50 100 150 200 250 300
Fig. 5. Images captured by the robot at three points. update step
Fig. 7. Comparison of computational time for updating particles. Bars
TABLE | indicate the number of keypoints detected from each image. Image 1 is the
RESULT OF POSITION TRACKING EXPERIMENTS one captured with the fastest shutter speed. The computational time was

l [ Tnput | Map | Method | Ave. Error | Max. Error | measured on a laptop with Core i7 3.33GHz.

HDRT* | 24cm, 1.3 | 6lem, 4.3

a | 9:00am | 3:30pm | HDR2f | 31cm, 1.3° 64cm, 4.2 . .
AEF | 77cm, 2.0° | 194cm, 5.6 distance traveled; 0.1, 0.3, 0.5, and #dy/sec for the time

o | a0 00 HDR% 122§m, lg §5cm, g-g elapsed. Occluded measurements are simulated by masking

:30pm | 4:00pm | HDR 12cm, 1. 4cm, 3. ; ; ; ;

AE 12em 1.8 | 20em. 3.2° part of input images. We used masks with the size of 5, 10,
HDRL | 50cm, 2.0°0 | 185%m, 4.7 20, and 30% of the image.

c | 4:00pm | 9:00am | HDR2 | 203cm, 1.9 | 415%m, 4.5° Fig. 8 shows the accuracy of the position tracking exper-
AE 512cm, 5.2 | 993m, 9.7

"HDR Kevhomt Set T method iments. Our method kept good localization accuracy with
* Union oefya(;?z k:yp(;xgose method) distorted odometry up to 5% error in distance and 0.5
* Auto-exposure deg/sec in orientation, and with 20% occluded input images.

. N . D. Localization in a Larger Environment
number of keypoints is shown in Fig. 7. The average updating

time was 812ns by our method and 1,285s by the method Lastly, we tested our method in a larger environment. We
that uses a union of keypoint sets. Significant reductions generated a campus map using two data sets collected at 9:00
the computational time have been seen particularly when tlaen and 9:30 am on different days. The distance that the robot
number of keypoints was large. Keypoints were rather eventyaveled was 12m in total. The Lu-Milios method [18] was
detected in images with different shutter speeds. again used to arrange two data sets.

3) RobustnessTwo tests to evaluate the robustness on We then collected another data set at 4:20 pm by manually
the proposed method were performed; one is using distortedvigating the robot on a path that differs from the two
odometry logs and the other is using partially occludegaths used for the map, and conducted a position tracking
measurements. We generated distorted odometry logs basegeriment using the data set and the map. Our method
on the data set of 9:00 am; on each step in the odometsyiccessfully kept track of the robot’s pose as shown in Fig.
log, a Gaussian random error was added in both the positi® We measured the accuracy at 21 reference points in the
and the orientation of the robot. We used Gaussian erropsith; the average error was @3, 2.2° and the maximum
with different standard deviations: 1, 3, 5, and 10% of therror was 164m, 10.2.
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Remaining topics include how to determine the optimal
number of images and the exposures for a HDR Keypoint
Set. An image histogram should be a help, and the number of
keypoints and the distribution of keypoints in an image could
also be used. We are also working on global localization
using visual words approach.

While we consider the High Dynamic Range requisite

outdoor vision, we do not expect it to solve all of

the illumination issues. For example, HDR might not be

Fig. 8.
and using partially occluded images (right).

The accuracy of localization using distorted odometry logs (leftf Solution to a problem that keypoints caused by sharp
edges of shadows can affect keypoint matches. Some other

technologies such as shadow removal should be required.
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Fig. 9. Localization experiment in a larger environment. The estimated
robot's trajectory by our method is shown in red. The map nodes generatE&B]
from 9:00 am data set and 9:30 am data set are shown in blue and cyan

dots, respectively. (4]
14

VI. CONCLUSION [15]

In this paper, we presented a localization method using a
High Dynamic Range vision to cope with outdoor illumina-; ¢
tion issues. Instead of fusing images captured at different
exposures, our method creates a set of keypoints incor-
porating keypoints detected in each image. The principrﬂﬂ
benefit of introducing High Dynamic Range vision is the
increased number of keypoints. We have demonstrated tHf!
our HDR Keypoint Set approach improves keypoint-based
localization in terms of the robustness, the accuracy and the
computational cost.
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