
Mobile Robot Localization Using Stereo Vision in Outdoor
Environments under Various Illumination Conditions

Kiyoshi Irie, Tomoaki Yoshida, and Masahiro Tomono

Abstract— This paper proposes a new localization method for
outdoor navigation using a stereo camera only. Vision-based
navigation in outdoor environments is still challenging because
of large illumination changes. To cope with various illumination
conditions, we use 2D occupancy grid maps generated from 3D
point clouds obtained by a stereo camera. Furthermore, we
incorporate salient line segments extracted from the ground
into the grid maps. This grid map building is not much
affected by illumination conditions. On the grid maps, the robot
poses are estimated using a particle filter that combines visual
odometry and map-matching. Experimental results showed the
effectiveness and robustness of the proposed method under
various weather and illumination conditions.

I. I NTRODUCTION

Autonomous navigation in outdoor environments is an
important issue in mobile robotics. One of the key issues
in outdoor navigation is localization under various condi-
tions. Localization for outdoor navigation has been studied
extensively and there have been proposed many methods
combining inertial sensors (such as odometry), and external
sensors such as GPS, laser scanners and cameras [1][2][3].

Stereo vision-based methods are a promising approach
to mobile robot localization. Stereo cameras can obtain
3D range data at high frame rate and also capture colors
and textures, which cannot be detected sufficiently by laser
scanners. Recently, image features with distinctive local
descriptors, such as SIFT, have been employed for mobile
robot localization [4]. These image features are useful to
identify landmarks in indoor environments without large
illumination changes. However, drastic illumination changes,
which often occur in outdoor environments, make it difficult
to obtain stable image features.

Fig. 1 shows examples of image feature extraction in
outdoor environments. The middle column of the figure
shows SIFT key points detected from two images of the same
place which were captured at different times. As can be seen,
the results of the SIFT key point detector vary depending on
illumination conditions. Additionally, none of the detected
key points was matched between two images using the SIFT
key point matcher. Similar results were obtained for edge
points as shown in the right column of the figure. Thus,
currently, it would be difficult to implement robust outdoor
localization using image features only, and we employ a
different approach.

This paper proposes a localization method using a stereo
camera for outdoor navigation to cope with the problems
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Fig. 1. Two images of the same place captured at different times and result
of image feature detection. Left: original image. Center: Key points detected
by SIFT. Right: Detected edge points. Lowe’s SIFT Keypoint Detector [5]
was used to detect the SIFT key points.

mentioned above. The proposed method estimates the robot
motion using visual odometry and corrects its accumulated
errors using a map-matching algorithm, which is based on
the shapes of 3D point clouds obtained by the stereo camera.
The map-matching is actually performed using 2D grid maps
generated by projecting 3D point clouds onto the ground. The
projected 2D grid maps are stable under various illumination
conditions and also are less computationally expensive than
3D maps. For environments without 3D features, such as
wide roads and open spaces, salient line segments are ex-
tracted from the ground surface and incorporated into the
grid map as additional landmarks. In this paper, we call
them road landmarks. A particle filter is used to fuse visual
odometry and map-matching. While a stereo camera is the
only required sensor in our method, other sensors, such as
wheel odometry and gyroscope, can be used to improve
localization accuracy.

Our method combines 3D range data and image features
in an effective manner to enhance robustness to illumination
changes. The shapes of the 2D grid maps generated from
3D point clouds are not much affected by illumination
conditions. Salient line segments on the ground can be
extracted stably under various illumination conditions. In
urban environments, there are plenty of 3D features including
walls, curbs, bushes, and trees. Also, a number of line
segments, such as road boundaries and traffic signs, can be
found on the ground. Thus, our method is applicable to many
man-made outdoor environments. We found that our method
was successfully performed in experiments on paved roads
and tiled pedestrian areas under various weather conditions.

The reminder of this paper is organized as follows. After
presenting related work in section II, we present our method
in sections III and IV. Experiments under various illumina-
tion conditions are presented in section V.



II. RELATED WORKS

Vision-based outdoor navigation has been studied for
decades [6]. Many methods of ego-motion estimation, such
as visual odometry, have been proposed [7][8] but visual
odometry is not sufficient because errors accumulate over
time. To correct the accumulated errors, landmark-based lo-
calization is necessary. Many features and objects have been
used as landmarks for outdoor navigation; road boundary
detection for autonomous driving [9], buildings [10] and
Braille blocks [11].

Some navigation methods do not use explicit landmarks
[12][13]. In these methods, the robot navigates along a pre-
learned path given as an image sequence, but precise robot
positions on the map cannot be obtained.

Recently, appearance-based localization methods which
are robust to changes in lighting have been proposed
[14][15]. These methods do not provide precise localization
on a metric map since they provide only topological mapping
and localization.

In contrast to the above approaches, our method uses a
map containing both 3D shapes and image features, and
can be used in structured environments as well as in less-
structured environments such as passage without apparent
road boundaries and open spaces without 3D features.

III. M AP BUILDING

A 2D occupancy grid map is used in our method. The
robot pose is denoted byx = (x, y, θ), assuming the robot
moves on a 2D ground plane. Each grid cell is labeled as
occupied, free, road landmarkor unknown.

First, we collect a stereo image sequence from the tar-
get environment using a manually operated robot that is
equipped with a stereo camera. The collected stereo images
are then processed off-line to build a map in the following
steps:

1) Create a 3D point cloud from stereo images and
simultaneously estimate the trajectory of the robot.

2) Project the 3D point cloud onto a 2D grid map and
label each cell as occupied or free according to the
height of the points in the cell.

3) Extract salient line features on the ground from the
images and label the cells that contain the line features
as road landmarks.

4) Close the loop based on 2D graph SLAM.

A. 3D SLAM based on Edge-Point ICP

A 3D point cloud map is built based on the method
proposed by Tomono [16]. The method uses image edge
points which are detected from not only long segments
but also fine textures. The number of edge points detected
is usually much larger than other local features (typically
thousands per one QVGA (320×240) image), and it is
favorable for the purpose of building occupancy maps.

We refer to a pair of left and right images asstereo frame
(frame, for short). The 3D edge pointPc = (X,Y, Z)T is
calculated from point(xl, yl)T on the left image and point

Fig. 2. Example of stereo SLAM based on edge points. Left: One of input
images. Right: point cloud map built from the input images. The yellow
points are higher and the red points are lower in height.

(xr, yr)
T on the right image based on the parallel stereo

formula.
The camera motion from timet − 1 to t is estimated

by matching the 3D points reconstructed from frameIt−1

with the 2D points detected in frameIt. The registration is
performed using a variant of the ICP algorithm on the image
plane. Letrt be the camera pose att, P i

t−1 be thei-th 3D
edge point reconstructed att− 1, andpit−1 be the projected
point of P i

t−1 onto imageIt. Let qit be the image edge point
at t, which corresponds topit−1. A cost functionF is defined
as follows:

F (rt) =
1

N

N∑
i=1

d(qit, p
i
t−1) (1)

Here,d(qit, p
i
t−1) is the perpendicular distance betweenpit−1

and the edge segment on whichqit lies.
Camera motionrt and edge point correspondences are

searched by minimizingF (rt) using the ICP algorithm. The
initial value of rt is set tort−1, and the initial correspon-
denceqit of pit−1 is set to the edge point that is the closest
to pit−1 in terms of Euclidean distance. By repeating the
minimization ofF (rt) and edge point matching, the optimal
rt and edge point correspondences are obtained.

Based on the obtained camera posert, a 3D map is built
by transforming the intra-frame 3D points from the camera
coordinate system to the world coordinate system. Only the
3D points tracked for more thann1 frames (typicallyn1 = 4)
are added to the 3D map. Also, 3D points with large variance
are removed. This filter is useful to eliminate blurred edges
and moving objects.

The procedure described in this section is also used in
visual odometry, as described in section IV-A. An example
of a point cloud map built by this method is shown in Fig.
2.

B. Generating 2D Occupancy Grid Maps

A 2D occupancy grid map is generated by projecting the
3D point cloud map onto the ground. The ground plane is
divided into square grid cells and the 3D points in the point
cloud are projected onto them. To remove 3D points on the
ground and also to reduce the noise caused by errors in
stereo matching, the grid cells are labeled as occupied or
free according to the number of the contained 3D points that
are higher thanth1. In our implementation, the size of the
cells was 10cm and th1 = 15cm.



Fig. 3. Detection of road landmarks. Left: original image. Center: detected
edge points. Right: detected salient lines for landmarks.

The 6-DOF camera trajectory estimated by 3D SLAM has
accumulated errors. When the camera moves long distance,
accumulated errors can be large in the height direction, which
increase spuriously-labeled cells in the 2D grid map. To
address this problem, we make the camera height constant
on the assumption that the robot moves on a flat ground.
3D points are rearranged on the ground plane based on the
robot’s 3-DOF poses and the camera pose relative to the
robot.

C. Detecting Road Landmarks

In contrast to indoor environments, which usually have
rich 3D features such as walls and furniture, some outdoor
environments have very few 3D features. Even laser scanners
can be affected by this problem, and it is even worse for
stereo vision which usually has a small field of view and a
limited range of stereo reconstruction. For stable localization
in such areas, other landmarks than 3D features are needed.

To cope with this problem, we use salient line seg-
ments on the ground surface. In urban environments, various
line segments can be found on the ground, such as road
boundaries, patterns in tiled floors, and traffic signs. These
salient features are detected stably under various illumination
conditions partly because the distance between the camera
and the ground is small.

Road landmarks are detected by the following procedure.
First, edge points are detected from the input image by the
Canny detector. Second, lines (continuous edge points) are
extracted using the Hough transform. Through these two
steps, not only salient long segments but also short segments,
which are useless for localization, are extracted from fine
textures on paved roads, boundaries between tiles of the
same color, etc. Since most of these short segments are roof
or valley edges, we remove them using a filter that only
extracts step edges. This procedure removes most of the
useless tiny textures and the remaining features are useful
for road landmarks. Fig. 3 shows examples of detection of
road landmarks.

The extracted edge points for road landmarks are projected
onto a 2D grid map. To filter out noises, only the cells that
contain edge points more than a threshold are labeled as road
landmarks.

D. Loop Closure

To reduce accumulated errors from stereo SLAM, loop
closure is performed to correct the robot trajectory based on
2D graph SLAM. We use a graph based SLAM formulation
[17] with optimization, as presented in [18].

The graph is constructed as follows. When the robot moves
for a certain distance, a node representing the robot pose is
automatically added to the graph, and also an arc is added
to represent geometric constraints between the new node and
the previous node. In our current implementation, an arc to
close the loop by connecting the nodes of the same place is
created manually.

IV. M ONTE CARLO LOCALIZATION

Our localization method uses a particle filter based on
Monte Carlo Localization [19]. In the prediction step of the
particle filter, we draw a set of particles based on the robot
motion estimated by visual odometry. In the update step, the
particles are weighted by the map-matching score and re-
sampled according to the weights. The following subsections
describe the detailed procedure.

A. Visual Odometry

3-DOF robot motion is calculated by firstly estimating 6-
DOF camera motion using visual odometry and then project-
ing the motion onto the ground plane. The 6-DOF camera
motion estimation is done basically in the same manner with
the stereo SLAM described in section III-A. The difference is
that no global maps are generated by the visual odometry, to
reduce memory consumption. The visual odometry uses local
point cloud maps to estimate camera motion. A local map is
created by integrating 3D points from multiple frames since
3D points reconstructed from one stereo frame can have large
errors. The local maps created in this procedure are re-used
in grid map matching described in section IV-C.

B. Prediction Step

In the prediction step, the particle filter uses 3-DOF
robot motion ut = (∆xt,∆yt,∆θt)

T , which is calcu-
lated by projecting the 6-DOF camera motion according
to Eq.(3). Here,T robot

camera is the transformation from the
camera coordinate system to the robot coordinate system.
x′
t = (x, y, z, ϕ, θ, ψ)T is the 6-DOF robot pose (ϕ: roll, θ:

pitch, ψ: yaw), andrt is the 6-DOF camera pose.∆x′
t is

the relative pose ofx′
t with respect tox′

t−1.

x′
t = T robot

camerart (2)

ut =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

∆x′
t (3)

Approximating the error by a normal distribution, the
robot pose represented byi-th particle xi

t = (xit, y
i
t, θ

i
t)

T

is calculated by using Eq.(4).



xi
t = xi

t−1 +R(θit−1)(ut +wi
t) (4)

R(θ) =

 cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

 (5)

wi
t ∼ N(0,Σt) (6)

The covariance matrixΣt is determined experimentally.

C. Update Step

The update step of the particle filter is based on a map-
matching between a global 2D grid mapMglobal and a local
2D grid mapMlocal. The global 2D grid map is built as
described in section III. The local 2D grid map is built by
the same procedure, using a point cloud generated through
the camera motion estimation (as described in section IV-A).

In the update step, particles are re-sampled according to
the weightwi proportional to the posterior probability in Eq.
(7).

wi ∝ p(Mlocal|xi
t,Mglobal) (7)

In our implementation,p(Mlocal|xi
t,Mglobal) is approxi-

mated by cosine correlation between the local grid map and
the global grid map. Letolk be the occupancy value of the
k-th cell in the local grid map, andrlk be the road landmark
value of the cell (Eq. (8) and (9)). Local map vectormlocal

is defined as Eq. (10).

olk =

{
1 (occupied)
0 (not occupied)

(8)

rlk =

{
1 (road landmark)
0 (not road ladnamrk)

(9)

mlocal = (ol1, r
l
1, o

l
2, r

l
2, ..., o

l
N , r

l
N ) (10)

Let ogk,x be the occupancy value of a cell in the global
grid map corresponding to thek-th cell in the local grid
map when the robot is atx (and rgk,x is defined similarly).
Global map vectormglobal,x is defined as Eq. (11).

mglobal,x = (og1,x, r
g
1,x, o

g
2,x, r

g
2,x, ..., o

g
N,x, r

g
N,x)(11)

The cosine correlation between the local grid map and
global grid map for thei-th particle is calculated as Eq. (12).
The weightwi is calculated by normalizing the correlation
ρi as Eq. (13).

ρi =
mlocal ·mglobal,xi

t

∥mlocal∥
∥∥∥mglobal,xi

t

∥∥∥ (12)

wi = ρi/
∑
j

ρj (13)

Fig. 4. Robot used in experiments.

D. Recovery from Localization Failure

Although our visual odometry works well under various
illumination conditions, it can fail under extremely poor
conditions. For example, direct sunlight can saturate a large
part of the captured image to black or white due to the limited
dynamic range of the camera. In such a case, sufficient
edge points cannot be detected, which causes large errors
in motion estimation.

This problem could potentially be avoided by using a
high dynamic range camera, which is costly, we took an
error-recovery approach. We found that this problem is
similar to slip of the wheels in the case of wheel odometry,
and considered it as a kind of kidnapped robot problem.
Several methods have been proposed for the kidnapped robot
problem [20][21]. Our solution is similar to Expanding Reset
method described in [22], which is suitable when the distance
of kidnap is relatively small.

V. EXPERIMENTS

We implemented the proposed method on a wheeled mo-
bile robot, which is equipped with a Bumblebee2 stereo cam-
era (Point Gray Research, Inc.). The camera was mounted at
a height of 86cm from the ground, tilted at a pitch angle of
-21◦. The image size used was QVGA.

A. Map Building under Various Illumination Conditions

Before localization experiments, we evaluated how our
maps are affected by illumination conditions. For compar-
ison, we built 2D grid maps of four areas under sunny
and rainy weather conditions, respectively. Fig. 5 shows the
images of the four areas and the maps built from them. A
lens flare seen in (a)-sunny did not affect the map. The
shadow of the building in this image was not detected as
a road landmark since the shadow boundary was blurred.
The shadows of several people in (b)-sunny were mostly
filtered out through stereo SLAM and map generation men-
tioned in Section III-A. The white lines in (c) and (d) are
detected as road landmarks under sunny and rainy conditions
despite light reflection by water. As can be seen, our map
building method generates similar maps even under different
illumination conditions, and this validates our map-matching
approach to outdoor localization.



(a)-sunny (a)-rainy

(b)-sunny (b)-rainy

(c)-sunny (c)-rainy

(d)-sunny (d)-rainy

Fig. 5. Images and grid maps under various illumination conditions. Each
row shows two sets of an image and a map of the same location obtained
under sunny and rainy weather conditions. Colors in the maps indicate labels
for cells: occupied (black), free (white), road landmarks (blue), unknown
(gray).

B. Localization under Various Illumination Conditions

We conducted experiments on robot localization in our
campus. The first experiment was conducted on a path of
400m, which is relatively rich in 3D features. A 2D grid
map was built from an image sequence captured on a cloudy
day (Fig. 6 (a)), and localization was performed on the map
off-line with an image sequence captured on a sunny day
(Fig. 6 (b)).

The robot was manually operated to run along the path
at a maximum speed of 75cm/sec, taking stereo images
at 20fps, 16,530 pairs of images in total. To evaluate
localization accuracy, we operated the robot to pass through
seven reference points, which we had determined in advance.

We compared two methods using the same data set, one
using only occupancy information without road landmarks
and the other using both occupancy information and road
landmarks. In the first method (without road landmarks), the
average pose error at the seven reference points was 60cm,
3.5◦; the maximum pose error was 202cm, 12.3◦. In the
second method (with road landmarks), the average pose error
was 46cm, 3.2◦; the maximum pose error was 75cm, 10.9◦.

Fig. 7 shows experimental results by our method (with
road landmarks). While the trajectory of the visual odometry
is distorted by accumulated errors, our localization method
successfully tracked the robot position throughout the path.

We performed the same experiment with two different
data sets (rainy / rainy and dark). In all experiments, our
method successfully kept track of the robot position. Table

Input Data Set Use Road
Landmark

Average Error Maximum Error

sunny yes 59cm, 2.3◦ 156cm, 7.6◦

sunny no 60cm, 3.5◦ 202cm, 12.3◦

rainy yes 37cm, 2.4◦ 159cm, 6.7◦

rainy no 98cm, 3.0◦ 277cm, 5.4◦

rainy and dark yes 47cm, 2.1◦ 156cm, 4.4◦

rainy and dark no 62cm, 2.6◦ 152cm, 8.9◦

TABLE I

LOCALIZATION RESULTS BY PROPOSED METHOD

(a) cloudy (used for map)

(b) sunny

(c) rainy

(d) rainy and dark

Fig. 6. Images used in the first experiment.

I shows the localization results by the proposed method.
Several images captured by the robot are shown in Fig. 6.

In these experiments, we used 1,000 particles. The initial
pose of the robot was given as a normal distribution with
a standard deviation of 10cm. The prediction step of the
particle filter was carried out for each frame of stereo images,
and the update step was executed at every 60 frames. The
processing time on a laptop with 2.4GHz Dual-Core CPU
was 60 to 120ms for each prediction step, depending on the
number of the edge points in the images, and approximately
300ms for each update step.

C. Localization in Environment with Wide Open Space

The second experiment was conducted on a path of 800m,
which includes an open space of approximately 50m × 50m
(Top right of Fig. 8) with few 3D features. In the open space,
the 2D grid map did not have any valid occupied cells due to
lack of 3D features, and only road landmarks coming from
white tiles on the floor could be used for localization.



Fig. 7. Localization result by proposed method (red line) and estimation
by visual odometry (green line). Magenta circles show reference points used
to measure the accuracy of the localization.

Fig. 8. Images captured by the robot during the second experiment.

We again compared the two methods (with and without
road landmarks). A 2D grid map was built from an image
sequence captured on a rainy day, and localization was
performed on the map off-line with an image sequence
captured on a sunny day. The accuracy of localization was
measured at 11 reference points. The method without road
landmarks had significant errors in the open space and at
other areas with few 3D features (see Fig. 9), resulting in
an average pose error of 313cm and 20.2◦; the maximum
error was 670cm and 86.3◦. With the road landmarks, on
the other hand, the average pose error was 41cm and 2.3◦;
the maximum error was 161cm and 5.3◦.

Fig. 10 shows a zoomed comparison of localization in the
open space. The error ellipses were calculated approximately
from particles. As can be seen in the figure, the method with
road landmarks provided better estimation.

D. Recovery from Localization Failure

Finally, we show an example of recovery from localization
failure. In an experiment on a sunny day, we found an
extremely poor condition shown in Fig. 11, in which a large
part of the images was blacked out because of sunlight
and shadow. As mentioned in section IV-D, visual odometry
cannot estimate the motion of the robot correctly in such
conditions.

We carried out an experiment with this image sequence
and a map built from a rainy data set. The result is shown in
Fig. 12. Visual odometry incorrectly estimated the motion of

Fig. 9. Comparison of two methods. Top: trajectory obtained without road
landmarks. Bottom: trajectory obtained using road landmarks. Magenta cir-
cles show reference points used to measure the accuracy of the localization.

Fig. 10. Localization results of two methods in open space. The red line
and the green ellipses show trajectory and error ellipses obtained with road
landmarks. The yellow line and the pink ellipses show trajectory and error
ellipses obtained without road landmarks.



Fig. 11. Images obtained during experiment. Left: visual odometry not
functional because of few edge points. Center: pole in the image used for
visual odometry while turning to right. Right: camera exposure was adjusted
to the shadow after turning.

(a) (b) (c)

Fig. 12. Recovery from localization failure. Top: estimated position (red)
and error ellipses (cyan). The trajectory obtained by gyro-assisted wheel
odometry (green) is shown for comparison. The robot navigated from top-
left to bottom- right in this figure. Bottom: distribution of particles. The
yellow triangles show particles. The red triangles show estimated position.
(a) Before kidnapping. (b) Kidnapping is detected. (c) Robot re-localized.

the robot for approximately 70 frames immediately before
the robot turned right. After the robot finished turning to
the right, localization failure is detected and expansion reset
occurred, and eventually the robot was re-localized. The
recovery from localization failure enables the robot to resume
localization even if it encounters extremely poor illumination
conditions as long as they are transient.

VI. CONCLUSION

In this paper, we have proposed a new localization method
for outdoor navigation using a stereo camera only. The
proposed method works robustly under various illumination
conditions due to map-matching using 2D grid maps gen-
erated from 3D point clouds obtained by a stereo camera.
We incorporated salient line segments extracted from the
ground into the grid maps, making it possible to localize
in environments without 3D features. Experimental results
showed the effectiveness and robustness of the proposed
method under various weather and illumination conditions.
Future work includes map building and localization in larger
environments using a camera with a wider field of view.
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