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Abstract— In this study, we aim to achieve autonomous
navigation for robots in environments that they have not previ-
ously visited. Many of the existing methods for autonomous
navigation require a map to be built beforehand, typically
by manually navigating the robot. Navigation without maps,
i.e., without any prior information about the environment, is
very difficult. We propose to use existing digital street maps
for autonomous navigation. Nowadays digital street maps (e.g.,
those provided by Google Maps) are widely available and
used routinely. Reuse of existing maps for robots eliminates
extra cost of building maps. One of the difficulties in using
existing street maps is data association between a robot’s
observation and the map, because the physical entities that
correspond to the boundary lines in the map are unknown.
We address this issue by using region annotations such as
roads and buildings and prior knowledge. We introduce a
probabilistic framework that simultaneously estimates a robot’s
position and the road’s boundaries. We evaluated our method in
complex urban environments. Our method successfully localized
in environments that includes both roadways and pedestrian
walkways.

I. INTRODUCTION

Outdoor navigation by mobile robots has been studied
extensively. However, navigation in urban environments in-
cluding pedestrian walkways is still a challenge.

Existing methods for mobile robot navigation can be
categorized into two types: map based and recognition based.
In the first approach, a robot localizes itself on the map.
Although many methods using this approach have been
proposed, they require manual navigation of the robot to
construct a map. In addition, the cost of building a large-
area map is high. Moreover, robots cannot navigate in
environments that they have not previously visited. As an
example of the recognition-based approach, a robot navigates
by finding and tracking the road that leads to its destination
given as a GPS coordinate. Although this approach attempts
navigation in unseen environments, robust road recognition
in real-world situations is still difficult.

As an intermediate approach, we propose to use existing
digital street maps for mobile robot localization. Reuse of
existing street maps eliminates the extra cost of map con-
struction. Another advantage is that existing maps provide
prior information of the environment being mapped. This
information can drastically reduce the difficulty of road
boundary recognition.

A significant problem in localization using existing maps
is the difficulty of associating the boundary lines shown
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Fig. 1. Examples of road boundaries in urban environments. Various
boundaries such as walls, curbs, guard rails and color differences are shown.
Some of the boundaries have no height differences (bottom three images);
hence they can not be found by curb-like obstacle detection.

in the maps with sensor observations. Existing map-based
localization assumes that the relationship between a map’s
contents and physical entities is known (e.g., lines on the map
denote lane markings). However, street maps are drawn for
human use. Hence, the physical entities that are represented
by the boundary lines are not explicitly mentioned in the
map; a line can denote any type of boundary such as a wall
or a curb. This makes it difficult to correlate data between
observations and the map. Although Hentschel et al. pro-
posed to use street maps for navigation [1], their localization
method uses only building information in the map which can
be easily matched with laser scanner observations.

We address this issue by introducing a probabilistic frame-
work that simultaneously estimates the position of the robot
and the road boundaries. The key aspect of our method is the
use of region annotations on the map and prior knowledge
of the environment. Some of the existing digital street maps
contain region information such as roads and buildings, in
addition to boundary lines. Combining this annotation and
the knowledge that people have (e.g., at boundaries between
a sidewalk and a roadway, curbs are more often used than
walls), we can use prior information to predict the physical
entity that corresponds to the boundary line on a map.

Map errors create another difficulty for street map-based
localization. Street maps are typically created by hand using
aerial photography and are often inaccurate. We address these
errors in a probabilistic manner. Error handling methods are
integrated into our framework.

The main contributions of this paper are as follows:

• Development of a probabilistic framework for simulta-
neous localization and road boundary recognition uti-
lizing prior information.



• Integration of map error handling methods into our
framework.

Our proposed method introduces the possibility of nav-
igation in places that a robot has not visited before. We
verified the effectiveness of our method through a series of
experiments in a challenging real-world environment.

II. RELATED WORK

Many methods for autonomous navigation have been stud-
ied. Most of the proposed methods can be categorized into
two types: map based and recognition based. Some of the
recent studies in the first category include methods using
a LIDAR intensity map [2], a landmark map [3], and an
image sequence map [4]. In these methods, maps are built
from manually collected sensor data.

Recognition-based navigation does not require a detailed
map. Instead, robots navigate toward their destinations by
finding and tracking the road. Extensive research has been
conducted on road detection and tracking. Methods of road
detection using a vision system [5], a laser scanner [6],
and probabilistic road boundary tracking [7] [8] have been
proposed. In the DARPA Urban Challenge, autonomous
vehicle navigation with a recognition-based approach was
achieved [9]. However, Levinson and Thrun pointed out that
navigation in real urban environments is more difficult than
in the environment used in the challenge [2]. In particular,
pedestrian walkways are more complex than the roadways;
for example, sometimes road edges are not as apparent as
roadways (Fig. 1). Additionally, GPS is not always reliable
in pedestrian walkways because of multipath problems.

Digital maps have been employed for localization in the
ITS research community. Mueller et al. proposed a topolog-
ical localization method on the basis of crossroad detection
[10]. Mattern et al. employed a detailed lane markings map
and a camera [11]. Hentschel et al. employed building infor-
mation in publicly available street maps and a laser scanner
[1]. In these methods, the correspondence between landmarks
in the map (lane markings and walls) and observations was
apparent. However, the data association problem between
various kinds of boundaries and observations has been left
unaddressed.

Regarding use of prior information, several authors em-
ployed aerial photography for SLAM. Früh and Zakhor
used detected edges in aerial photography for 2D laser-
based localization [12]. One of the challenges in using aerial
photography is data association. Kümmerle et al. used a
3D laser scanner to make the data association robust to
occlusions [13]. Parsley and Julier addressed the difficulty of
data association between the edge map and sensor readings
[14] . They used latent structures to utilize high-level features
for data associations between different types of maps. Our
data association problem is similar to this; a significant
difference is that we use additional prior information: region
information and human knowledge. Those methods above
focus on map construction, not navigation. Hence, road
boundary recognition, which is an important aspect of online
navigation is not achieved by these methods.

Fig. 2. System Overview.

The advantages of the digital street maps over aerial
photography are that these maps do not rely on image
processing, road regions and boundaries are clearly given,
and annotations are provided by humans, which can be
useful beyond localization (e.g., path planning). Although
maps for human use are usually less accurate than aerial
photography, our map error handing mechanism compensates
for this disadvantage.

III. OUR APPROACH

Our approach is outlined in this section.
i. Use of existing maps intended for humans

Our method uses an existing digital street map that
contains region information. We assume that the
regions in the map are fully annotated. We use
three types of annotations:roadway, sidewalkand
building.

ii. Human knowledge as prior information
Human knowledge is used as prior information to
make recognition easier. For example, if a high
wall is found along a sidewalk, it is more likely
to be a boundary between the sidewalk and a
building rather than the boundary of a roadway.
Using both the map and this knowledge, we can
make assumptions for object recognition. Thus, the
problem becomes far easier than the generic object
recognition problem.

iii. Simultaneous estimation of position and road boundary
Some of the probabilistic methods are known to be
effective for mobile robot localization [15] [16]. We
construct a probabilistic framework for simultane-
ous localization and road boundary classification on
the basis of the Monte Carlo Localization [15]. The
prior information is represented in a probabilistic
form and used in the framework.

iv. Map error handling
Existing maps for humans often contain errors,
leading to failure of localization. We model errors
such as small misalignments, road widths, and
block lengths in a probabilistic manner to address
the errors within the framework mentioned above.

IV. PROPOSED METHOD

Fig. 2 shows the overview of our method. We use a digital
street map that contains boundary and region information.



TABLE I

INPUT MAP LABELS M
Category Labels

Road
Region Sidewalk

Building and everything else
Road-Sidewalk

Boundary Sidewalk-Building
Building-Road

Fig. 3. Top-left: an example of an existing street map. Top-right: aerial
photography. Bottom-left: region annotations we use in our methods are
shown by colors. Bottom-right: an image taken in the environment.

Our localization uses a particle filter; the essence of our
method lies in the updating step in which the position of
the robot, road width error and road boundary classes are
simulaneously estimated.

A. Map Representation

We use an existing digital street map containing region
information and boundaries. In our method, we assume
that (at least) three types of region annotations:sidewalk,
roadwayandbuilding, are provided in the map. Note that the
annotationbuilding includes buildings and everything except
roadways and pedestrian ways. We use an existing street map
in the form of 2D grid map. Each cell in the grid map has
one of the labels shown in Table. I. We refer to the grid
map representation of an existing street map as theglobal
grid map. Converting existing maps into global grid maps is
out of the scope of this work. In the experiments described
in this paper, we used manually generated grid maps. An
example of an existing street map and the annotations we
use are shown in Fig. 3.

B. Localization

Our localization method uses a particle filter on the basis
of Monte Carlo Localization [15]. The robot is assumed to
navigate on a flat surface and the 2D pose (position and
orientation) of the robot,x = (x, y, θ), is estimated. In this
paper we focus on the position tracking problem when the
initial pose of the robot is given. In the prediction step of the

particle filter, we draw a new generation of the particle set
using a motion model. In the update step, we use a local 2D
grid map that contains cues to find road boundaries. We refer
to the grid map as theobservation grid map. In our current
implementation, the grid map contains 3D shape, colors and
edges detected by a stereo camera (see section V for details).
Since our framework does not rely on specific sensor type,
other sensors such as a laser scanner can be used as well.

When the robot’s motion estimation is given, we predict
the pose of the robot. For each particle, we draw a new
generation of a particlesit, according to the probability of
the robot pose given the previous statesit−1 and relative
movement of the robot∆xt.

sit ∼ P (xt|xt−1 = sit−1,∆xt). (1)

In the update step, a local observation grid mapZ =
{z1, ..., zn} is generated. We denote a cell of the observation
grid map byzj . The particles are resampled according to
the weight proportional to the likelihood ofZ given si and
global grid mapM

ωi ∝ P (Z|si,M). (2)

We approximate the likelihood of the observation by the
product of cell-wise likelihood by

P (Z|si,M) ≈
∏
j

P (zj |mk)
α, (3)

assuming the independence between grid map cells. Where
k is the coordinate on the global map that corresponds to
zj when the robot pose issi. mk ∈ M is the map label
at k. Since grid cells are not really independent each other,
α(< 1) is used to weaken the independence assumption [17].
Here, we face the data association problem. Calculating eq.
(3) directly is not easy because the relationship between the
map labelmk and the sensor readingszj is unclear.

To break down the large problem into smaller pieces, we
introduce a hidden variabler ∈ R that represents a road
boundary class. Classes used in our method are shown in
Table. II. We denote the road boundary class atk by rk. By
usingr, eq. (3) can be expanded as

P (zj |mk) =
∑
rk∈R

P (zj |rk,mk)P (rk|mk). (4)

Making the approximationP (zj |rk,mk) ≈ P (zj |rk), we
calculate cell-wise likelihood as follows.

P (zj |mk) =
∑
rk∈R

P (zj |rk)P (rk|mk). (5)

This derivation was inspired by [18]. Now eq. (3) is decom-
pose into two easier likelihood calculations. The first part
P (zj |rk) is the observation likelihood given the boundary
type, which is far easier than eq. (3) because relationship
between the observation and the boundary type is apparent.
The second halfP (rk|mk) represents the likelihood of road
boundary type given the map label, which can be given using
the prior knowledge on the environment (i.e. a curb is more
likely than a wall on the boundary between a sidewalk and
a roadway).



TABLE II

ROAD BOUNDARY CLASSESR
Class Description

Wall Vertical flat surface
Curb Curb and small step
Line Line, Color change

Plants Bush, tree
Guard rail Rail, bars

Not a boundary Road, sidewalk, building

C. Road Boundary Classification

If the robot pose is known, the correspondence between a
cell in the observation grid mapz and a cell in the global grid
mapm can be uniquely determined and the road boundary
class of the global grid map cell can be estimated as

r̂ = argmax
r∈R

P (r|z,m). (6)

Using Bayes theorem, we obtain

P (r|z,m) ∝ P (z|r,m)P (r|m)

≈ P (z|r)P (r|m). (7)

We consider estimation of road boundary classes when
robot pose is given as a probability distribution. We again
denote the correspondence between the observation grid map
and the global grid map, in terms of robot posex, by zj and
mk. The probability that global map cell atk belongs to the
classrk givenZ andM is calculated

P (rk|Z,M) ≈
∫
x

P (rk|zj ,mk)dx

∝
∫
x

P (zj |rk)P (rk|mk)dx. (8)

Since we have the distribution of the robot pose as a set
of particles, the integral can be calculated by summing up
particle-wise likelihood as

r̂k = argmax
r∈R

P (rk|Z,M) (9)

P (rk|Z,M) ∝
∑
si

P (zj |rk)P (rk|mk). (10)

Since the termP (zj |rk)P (rk|mk) is identical as eq. (5), we
can reuse the intermediate calculation results of the obser-
vation likelihood. Thus, we have the robot pose estimation
and the road boundary classification simultaneously.

D. Handling Map Errors

Existing street maps often contain errors. There are various
kinds of errors, such as small misalignments and incorrect
road widths. In our experiences, relatively large errors are
often found in the width of roads and the length of blocks.
In this section we present error handling methods integrated
within our localization framework.

1) Minor Map Errors: To handle small misalignments in
maps, we introduce a probabilistic map. Each cell in the
map has a set of probabilities that the ”true” label of the
cell is m ∈ M. So far we assume that the distance of
misalignments (xε and yε in the map coordinates) follows
a normal distribution. The probability that the ”true” label
of the map cell atk = (x, y) is m′ can be calculated as

Pk(m
′) =

∫ ∫
δm′(x+ xε, y+ yε)G(xε, yε)dxεdyε. (11)

Here G(x, y) is a 2-dimentional Gaussian function and
δm′(x, y) is a function that returns 1 when the ”original”
map label at the location ism′, otherwise returns 0. This
can be easily implemented as the Gaussian filtering.

Using this error model, eq. (3) is rewritten as

P (Z|si,M) ≈
∏
j

{
∑
m′

∑
r

P (zj |rk)P (rk|m′)Pk(m
′)}α.

(12)
2) Road Width Estimation:We propose a road width

estimation method integrated within the localization frame-
work. Our approach is similar to probabilistic lane tracking
methods [7] [8]. We estimate the error ratiod between true
road widthw′ and road width in the mapw that satisfies
w = dw′. Adding d to the state vector,x = (x, y, θ, d) is
estimated by the framework described in section IV-B. Our
assumption on the road width is that the width depends on
the street blocks and the width changes gradually within a
street block.

We give the initial value ofd as a uniform distribution
from [0.5:2.0]. As the robot moves a certain distance, we
predictd as follows.

dt = dt−1 +N(0, σ2
d) (13)

The standard deviationσ2
d is determined empirically. In the

update step of the localization, we do not directly observed;
instead, we scale the observation grid map laterally usingd in
matching it with the global grid map. When robot arrives at
the end of a street block, the distribution ofd is re-initialized
by the uniform distribution.

3) Handling Length Errors:The length of a street block is
also often incorrect. When robot is navigating along a street,
large error is found at an intersection. This problem can be
considered as a kind of kidnapped robot problem [19] [20]
[21]. We address the issue by continuously adding random
particles that distribute in the longitudinal direction, taking
into account the length error.

V. IMPLEMENTATION

A. Sensor

We describe our current implementation used in the exper-
iments in this paper. The only sensor used is a stereo camera.
We obtain 3D point clouds and camera motion estimation
using edge point based stereo SLAM presented by Tomono
[22]. The advantage of using a stereo camera is that we can
obtain both 3D information and color and texture information
at high frame rates. The disadvantages are the limited field
of view and range distance.



TABLE III

FEATURES USED FOR OBSERVATION

Category Feature Dimensions

3D info shape 4
Color H from HSI 15

S from HSI 15
Textures and Edges Edge strength 8

Edge length 5
Valley/step edges 5

B. Motion Estimation

In the prediction step of the particle filter, we use a motion
model using the camera motion estimation obtained by the
stereo SLAM [22]. The 3D camera motion is projected onto
the 2D surface as described in [23], to obtain robot motion
estimation.

C. Generation of Observation Grid Maps

Each cell in our observation grid map consists of a set
of histograms containing 3D features, colors, textures and
edges. List of features are summarized in Table. III. An
observation grid map is generated as follows. First, a 3D
point cloud obtained by the stereo SLAM is stored in a 3D
grid map. Second, for each cell in the 3D grid map, 3D shape,
color and edges are detected and stored into the cell. Finally,
a 2D observation grid map is generated by summarizing the
3D grid map into the 2D grid map.

1) 3D information: The 3D shape is detected by the
distribution of 3D points including 26-neighbor cells. A 3D
cell is given one from the following labels:wall, vertical
bar, horizontal barandothers.

2) Color, Texture and Edge:Color, texture and edge
properties are detected in the images by projecting the
3D grid cell onto the image. We use HSI color space; H
and S values are quantized and stored into 15-dimentional
histograms. Edges are detected by canny filter [24]. The
strength, the length and the intensity changes of an edge
(whether it is a valley or a step edge) are also quantized,
counted and stored in the histograms. These features are
useful to detect road boundaries without 3D features such
as lines, color differences and texture differences.

D. Calculation of Observation Likelihood

To calculate the observation likelihood, we calculate cell-
wise observation likelihood by a product of feature-wise
observation likelihood. Denoting features stored in an ob-
servation grid cellz by f1, ...fN ,

P (z|r) ≈
∏
i

P (fi|r). (14)

We trainP (fi|r) using labeled data sets.

E. Maps

Our ultimate goal is a system that can handle an existing
digital street map without any pre-processing by human;
however, we have not implemented the feature yet. So far
we annotate maps by hand. We use a captured image of

Fig. 4. Device used in experiments

Fig. 5. Images used in the first experiment.

Google Map, and annotations are given by colors. See Fig.
3 for an example.

The prior information,P (rl|ml) in eq. (5), is given
manualy, based on how often each type of road boundary
is found in the environment. Table. IV shows an example of
likelihood given as the prior information.

VI. EXPERIMENTS

We carried out experiments in environments close to
Tsudanuma station. We collected image sequences using
a PointGrey Bumblebee2 stereo camera, mounted on a
wheelchair (Fig. 4). Experiments are executed off-line. The
size of the images used was 640×480.

The observation likelihoodP (fi|r) is learnt from 21,708
images that were not used for the localization experiments.
The size of the global and observation grid map cell was
23.5cm, which is the same as the distance per pixel of the
map we used.

A. Localization and Road Classification in a Sidewalk

The result of the position tracking in a 150m sidewalk
course is shown in Fig. 6. The reference trajectory drawn
by hand is also shown. Our proposed method successfully
tracked the path without significant errors; we consider the
localization result to be sufficiently accurate for navigation
tasks1.

The processing time measured on a desktop PC with Core
i7 3.47GHz was approximately 90ms for each prediction
step, and 300ms for each update step. The number of
particles employed was 100.

During the position tracking, 653 map cells were classified
as road boundaries. We compared the result with the ground

1A quantitative evaluation of the localization accuracy is difficult because
the map contains errors, and there is no ”exact correspondence” between a
location in the map and the world.



TABLE IV

EXAMPLE OF PROBABILITIES USED AS PRIOR KNOWLEGEP (r|m).

Road boundary class (r)
Not a boundary Line Curb Wall Guard rail Plants

Roadway-Sidewalk boundary 0.02 0.23 0.35 0.05 0.25 0.1
Sidewalk-Building boundary 0.02 0.3 0.13 0.3 0.05 0.2Map (m)
Building-Roadway boundary 0.02 0.28 0.15 0.35 0.1 0.1

Fig. 6. Position tracking result of the first experiment. Reference trajectory
is drawn by hand.

Estimated Label
Curb Wall Guard rail Plants

T
ru

th

Curb 68 0 13 0
Wall 0 503 0 7

Guard rail 0 0 36 0
Plants 16 0 10 0

Fig. 7. The confusion matrix of road boundary classification.

truth generated by hand. The confusion matrix is shown in
Fig. 7. The overall precision was 93%; while walls on the
left side of the course were classified well, some of the curbs
at the right side were missing. This is because edges of the
curbs were not apparent and they are sometimes occluded
by trees (see Fig. 5 left image). The classification results on
plants were not good because of poor illumination conditions
(Fig. 5 right). Incorporating different sensor observations
such as laser scanners would improve the result.

B. Position Tracking in a Challenging Urban Environment

We evaluated our method in a more complex environment.
We collected images in a crowded residential street where
there are apartment buildings, stores, parking lots, and a
hospital. The challenging route includes both sidewalks and
roadways, and there are several apparent errors in road
widths and lengths. We compared the performance of the
proposed method with and without our map error handling
mechanism.

The result and images used are shown in Fig. 8. Our
proposed method successfully kept track of the robot pose
without catastrophic errors. The method without map error

handlings, on the other hand, had significant localization
errors. At point C, both methods had a relatively large error
because of ambiguous road boundaries.

The road width estimation is evaluated in four sidewalks in
the course (Fig. 8 A, B, E, I). The widths of these sidewalks
are all incorrect in the map; the differences between the
width in the map and the actual width are 0.6m to 1.3m.
The results are summarized in Fig. 9. At three points (A, B,
I), our method successfully estimated the road width with the
accuracy of 0.3m. However, at point E, the estimation was
wrong. As seen in Fig. 8, two candidates of the boundary
are found at right side of the robot. Since the road width is
incorrect, we lack information to solve the data association
and the map error estimation simultaneously.

VII. CONCLUSIONS

In this paper, we proposed a new localization and road
boundary recognition method using an existing digital street
map. Use of existing maps eliminates the cost of map
construction. A significant challenge in this approach was to
make correct association between the map and the observa-
tions. We used annotations on the map and prior knowledge
to solve this problem. A framework is constructed that
simultaneously localizes the robot and classifies the road
boundaries. We also proposed a map error handling mecha-
nism that is integrated within the framework. We conducted
experiments in real-world urban environments. We have
demonstrated that the digital street map-based localization
is possible despite several map errors.
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